Application of pinch technology through a computational program for planning a heat exchanger network
DOI:
https://doi.org/10.47456/bjpe.v8i4.38062Keywords:
Steam Networks, Simulink, Matlab, Energy Balance, SimulationAbstract
Pinch technology is a methodology used in the optimization and dimensioning of heat exchanger networks, initially developed by Hohnmann and Linnhoff during the oil crisis in the mid 70's and 80's. With greater energy efficiency and consumption reduction. In this work, a computational algorithm was developed using the Matlab tool and its extension for process simulation, Simulink, in order to apply the principles of Pinch technology in the computational resolution of a problem situation involving a network of heat exchangers. Initially, a problem situation involving Pinch technology was selected, which was solved by traditional method. From this, the computational algorithm was developed in Matlab, based on the principles of Pinch technology and using data belonging to the problem selected for study; performing a comparison of the original data and those found by the algorithm to validate the developed program. After validating the Matlab algorithm, Simulink was used to develop a program in block language, to provide a better graphic visualization of the obtained results, comparing them again with the results of the traditional method. The results obtained by the algorithms in Matlab / Simulink were the same ones obtained by the traditional method, thus validating the programs developed in this research, thus being able to assist future works that aim to deepen the computational application of Pinch technology.
Downloads
References
Arrotéia, D. R. (2019). Aplicação da metodologia Pinch em uma planta de tratamento de gordura. Centro Universitário FEI. https://repositorio.fei.edu.br/bitstream/FEI/3039/1/fulltext.pdf
Deveque, R. (2019). Aplicação da metodologia Pinch de integração energética em um processo de síntese da amônia. Trabalho de Conclusão de Curso. Universidade Tecnológica Federal do Paraná. http://repositorio.roca.utfpr.edu.br/jspui/handle/1/12502
Guimarães, E. E. X. F. (2019). Otimização energética não paramétrica de uma planta de biodiesel via tecnologia Pinch. Universidade Federal do Maranhão (UFMA). https://rosario.ufma.br/jspui/handle/123456789/4330
Hohmann, E. C. J. (1971). Optimun network for heat exchange. PhD Dissertation – University of Sounthern California, Los Angeles, CA https://www.proquest.com/openview/9df67d6f157aba5c0e6f68106665f34b/1?pq-origsite=gscholar&cbl=18750&diss=y
Jalalvand, A. R., Roushani, M., Goicoechea, H. C., Rutledge, D. N., & Gu, H. W. (2019). MATLAB in electrochemistry: A review. Talanta, 194, 205-225. https://doi.org/10.1016/j.talanta.2018.10.041 DOI: https://doi.org/10.1016/j.talanta.2018.10.041
Linnhoff, B. (1983). User guide on process integration for the efficient use of energy. AIChE J., v. 28. https://ci.nii.ac.jp/naid/10003395547/
Marques, J. A. (2018). Integração de Processo Utilizando a Tecnologia PINCH. Universidade Católica de Pernambuco. https://drive.google.com/file/d/1H4L2JXhvbZ_vxrak8CVgWb1JHrc3yAKC/view
Módenes, A. N. (1995). Síntese de redes de trocadores de calor flexíveis. Dissertação de Mestrado. Universidade Estadual de Maringá. http://repositorio.uem.br:8080/jspui/bitstream/1/3828/1/000079904.pdf
Olsen, D., Abdelouadoud, Y., Liem, P., & Wellig, B. (2017). The role of Pinch analysis for industrial ORC integration. Energy Procedia, 129, 74-81. https://doi.org/10.1016/j.egypro.2017.09.193 DOI: https://doi.org/10.1016/j.egypro.2017.09.193
Palú, F. (1995). Otimização da distribuição de área em redes de trocadores de calor. Dissertação de Mestrado. Universidade Estadual de Maringá. http://repositorio.uem.br:8080/jspui/handle/1/3792
Roque, M. C. (2000). Desenvolvimento de software para a sintese de rede de trocadores de calor considerando projeto detalhado e a flexibilidade do sistema. Universidade Estadual de Campinas. https://1library.org/document/zw0kp8vy-desenvolvimento-software-trocadores-considerando-projeto-detalhado-flexibilidade-sistema.html
Tomita, T., Ishii, D., Murakami, T., Takeuchi, S., & Aoki, T. (2019). A scalable Monte-Carlo test-case generation tool for large and complex simulink models. In: 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE). IEEE, p. 39-46. https://ieeexplore.ieee.org/document/8876967 DOI: https://doi.org/10.1109/MiSE.2019.00014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Production Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.