Bibliometric analysis and research trends on chloride determination in the oil industry

Authors

DOI:

https://doi.org/10.47456/bjpe.v9i3.40905

Keywords:

Inorganic chlorides, Crude oil, bibliometrics

Abstract

The presence of inorganic chlorides, even at low concentrations in petroleum, is associated with a series of operational problems. The determination of inorganic chlorides plays an important role in the petroleum industry. In this study, a bibliometric analysis using the free VOSviewer application and the Web of Science database was performed to provide an overview on the application of chloride determination in petroleum. A total of 3117 articles were analyzed on various aspects of publication characteristics such as publication production, countries, institutions, journals, highly cited articles and keywords. The number of publications in this application has steadily increased over the past 23 years. China and USA were the countries with the highest link strength index. China played a central role in the network of collaboration between the most productive countries. The Federal University of Santa Maria (UFSM) was the institution with the highest link strength (88). Energy & Fuels was the most productive newspaper (173). The keywords surface tension, ionic liquids, emulsion, demulsification, adsorption, zeta potential and wettability are considered critical future research points.

Downloads

Download data is not yet available.

Author Biographies

Maria de Fátima Pereira dos Santos, Federal University of Espírito Santo - UFES

PhD in Analytical Chemistry from  Federal University of Santa Maria, (2009). She was a consultant on standards for the Brazilian Association of Technical Standards in the commission for studies on fuels and special products. She is currently an Associate Professor of Petroleum Chemistry / Analytical Chemistry. Has experience in the area of Petroleum Chemistry, with emphasis on quality control, validation of methods and characterization using techniques of physical-chemical measurements, combustion, solvent extraction, gravimetric, potentiometric, X-ray fluorescence, infrared, ultraviolet, chemiluminescence and thermogravimetry. She participates as a permanent member of the PPGEN, Master in ENERGY, research line Oil, gas and renewable energies. He works mainly in the study of the following topics: behavior of mixtures and determination of solubility parameters in Brazilian oils, use of alternative microwave and ultrasound energies in the separation of heavy oil emulsions and in the development, optimization and validation of methods for the characterization of extra-heavy oils, development of methods for the determination of Dielectric and Electrical properties in Oils and Oil Emulsions.

Maristela Araújo Vicente, Federal University of Espírito Santo - UFES

PhD in Biological Sciences from the Federal University of Ouro Preto (2007). She is currently Adjunct Professor III at the Federal University of Espírito Santo, located in the Department of Natural Sciences. She teaches courses in Analytical Chemistry and Instrumental Analysis. She has experience in the area of Analytical Chemistry, with emphasis on Analytical Instrumentation, working mainly on the following subjects: sample preparation, petroleum, ultrasound, water, remediation. It has 02 national innovation patents.

References

Adeyemo, D. J., Umar, I. M., Funtua, I. I., Thomas, S. A. & Agbaji, E. B. (2006). Trace Multielement Content of Some Crude Oils by Instrumental Neutron Activation Analysis Techniques. Instrumentation Science & Technology, 32(6), 681–687. https://doi.org/10.1081/CI-200037038 DOI: https://doi.org/10.1081/CI-200037038

Agência Nacional de Petróleo. (2022, 29. July). Anuário Estatístico 2022. https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-abertos/anuario-estatistico-2022

Aguiar, D. V. A. de, da Silva Lima, G., da Silva, R. R., Júnior, I. M., Gomes, A. de O., Mendes, L. A. N. & Vaz, B. G. (2022). Comprehensive composition and comparison of acidic nitrogen- and oxygen-containing compounds from pre- and post-salt Brazilian crude oil samples by ESI (-) FT-ICR MS. Fuel, 326(July), 125129. https://doi.org/10.1016/j.fuel.2022.125129 DOI: https://doi.org/10.1016/j.fuel.2022.125129

Aria, M. & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007

American Society for Testing and Materials. ASTM D3230-19. (2019). Standard Test Method for Salts in Crude Oil (Electrometric Method). https://www.astm.org/Standards/D3230.htm

American Society for Testing and Materials. ASTM D512-12. (2021). Standard Test Methods for Chloride Ion in Water. https://doi.org/10.1520/D0512-12.2

American Society for Testing and Materials. ASTM D6470-99. (2020). Standard Test Method for Salt in Crude Oils (Potentiometric Method). https://doi.org/10.1520/D6470-99R20 DOI: https://doi.org/10.1520/D6470-99R20

Biresselioglu, M. E., Demir, M. H., Solak, B., Kayacan, A. & Altinci, S. (2020). Investigating the trends in arctic research: The increasing role of social sciences and humanities. Science of The Total Environment, 729, 139027. https://doi.org/10.1016/J.SCITOTENV.2020.139027 DOI: https://doi.org/10.1016/j.scitotenv.2020.139027

Bueno, C. da S., Sattamini, S. R., Santa Anna, L. M. M., Silveira, J. M. F. J. da, Buainain, A. M. & Poz, M. E. S. D. (2017). Rede de cooperação tecnológica da petrobras e universidades e das suas áreas de tecnologia: panorama atual e perspectivas. Revista Iniciativa Econômica, 3(1), 66–89. Recuperado de https://periodicos.fclar.unesp.br/iniciativa/article/view/10970/7483 DOI: https://doi.org/10.5151/enei2017-01

Campos, A. F., Cassella, A. R. & Cassella, R. J. (2020). Microwave-Assisted Extraction of Chloride Followed by Ion Chromatography as an Alternative to the ASTM D6470 Method for the Determination of Crude Oil Salinity. Energy and Fuels, 34(6), 6844–6850. https://doi.org/10.1021/acs.energyfuels.0c00425 DOI: https://doi.org/10.1021/acs.energyfuels.0c00425

Cardoso, A. L., Neves, S. C. G. & da Silva, M. J. (2008). Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation. Energies 2008, Vol. 1, Pages 79-92, 1(2), 79–92. https://doi.org/10.3390/EN1020079 DOI: https://doi.org/10.3390/en1020079

Coutinho, D. M., França, D., Vanini, G., Gomes, A. O. & Azevedo, D. A. (2022). Understanding the molecular composition of petroleum and its distillation cuts. Fuel, 311(November 2021), 122594. https://doi.org/10.1016/j.fuel.2021.122594 DOI: https://doi.org/10.1016/j.fuel.2021.122594

Delfino, R. J., Gong, H., Linn, W. S., Hu, Y. & Pellizzari, E. D. (2003). Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. Journal of Exposure Science & Environmental Epidemiology, 13(5), 348–363. https://doi.org/10.1038/sj.jea.7500287 DOI: https://doi.org/10.1038/sj.jea.7500287

Deyab, M. A. (2007). Effect of cationic surfactant and inorganic anions on the electrochemical behavior of carbon steel in formation water. Corrosion Science, 49(5), 2315–2328. https://doi.org/10.1016/J.CORSCI.2006.10.035 DOI: https://doi.org/10.1016/j.corsci.2006.10.035

Doyle, A., Saavedra, A., Tristão, M. L. B., Nele, M. & Aucélio, R. Q. (2011). Direct chlorine determination in crude oils by energy dispersive X-ray fl uorescence spectrometry : An improved method based on a proper strategy for sample homogenization and calibration with inorganic standards. Spectrochimica Acta Part B: Atomic Spectroscopy, 66(5), 368–372. https://doi.org/10.1016/j.sab.2011.05.001 DOI: https://doi.org/10.1016/j.sab.2011.05.001

Enders, M. S. P., Anschau, K. F., Doneda, M., Druzian, G. T., Gomes, A. O., Guimaraes, R. C. L., Flores, E. M. M. & Muller, E. I. (2020). Characterization of Inorganic Solids Present in Brazilian Crude Oil Emulsions Using Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectrometry (EDS): Evaluation of the Effect of Solvents. Energy and Fuels, 34(2), 1309–1316. https://doi.org/10.1021/acs.energyfuels.9b03087 DOI: https://doi.org/10.1021/acs.energyfuels.9b03087

Fernandes, H. A., Zanelato, L. N., Decote, P. A. P., Santos, H. N., Senger, C. M., Dias, F. C., Muller, E. I., Flores, E. M. M., Mendes, L. A. N., Vicente, M. A. & Santos, M. F. P. (2022). Effects of calcium, magnesium, and strontium chlorides in determining the total acid number using potentiometric titration. Fuel, 311(1), 122522. https://doi.org/10.1016/J.FUEL.2021.122522 DOI: https://doi.org/10.1016/j.fuel.2021.122522

Fu, H. Z., Wang, M. H. & Ho, Y. S. (2013). Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Science of The Total Environment, 443, 757–765. https://doi.org/10.1016/J.SCITOTENV.2012.11.061 DOI: https://doi.org/10.1016/j.scitotenv.2012.11.061

Gab-Allah, M. A., Goda, E. S., Shehata, A. B. & Gamal, H. (2020). Critical Review on the Analytical Methods for the Determination of Sulfur and Trace Elements in Crude Oil. Critical Reviews in Analytical Chemistry, 50(2), 161–178. https://doi.org/10.1080/10408347.2019.1599278 DOI: https://doi.org/10.1080/10408347.2019.1599278

Gajdosechova, Z., Dutta, M., Lopez-Linares, F., de Azevedo Mello, P., Dineck Iop, G., Moraes Flores, E. M., Mester, Z. & Pagliano, E. (2021). Determination of chloride in crude oil using isotope dilution GC–MS: A comparative study. Fuel, 285, 119167. https://doi.org/10.1016/j.fuel.2020.119167 DOI: https://doi.org/10.1016/j.fuel.2020.119167

Gazulla, M. F., Ventura, M. J., Orduña, M., Rodrigo, M. & Torres, A. (2022). Determination of trace metals by ICP-OES in petroleum cokes using a novel microwave assisted digestion method. Talanta Open, 6, 100134. https://doi.org/10.1016/J.TALO.2022.100134 DOI: https://doi.org/10.1016/j.talo.2022.100134

Gorrepati, E. A., Wongthahan, P., Raha, S. & Fogler, H. S. (2010). Silica precipitation in acidic solutions: Mechanism, pH effect, and salt effect. Langmuir, 26(13), 10467–10474. https://doi.org/10.1021/LA904685X DOI: https://doi.org/10.1021/la904685x

Granatelli, L. (1957). Determination of Organically Bound Chlorine in Petroleum Fractions with Oxyhydrogen Burner. Analytical Chemistry, 29(2), 238–241. https://doi.org/10.1021/AC60122A017 DOI: https://doi.org/10.1021/ac60122a017

Hezave, A. Z., Dorostkar, S., Ayatollahi, S., Nabipour, M. & Hemmateenejad, B. (2013). Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl] + distilled or saline water/heavy crude oil)) as a new surfactant. Journal of Molecular Liquids, 187, 83–89. https://doi.org/10.1016/J.MOLLIQ.2013.05.007 DOI: https://doi.org/10.1016/j.molliq.2013.05.007

Holkem, A. P., Voss, M., Schlesner, S. K., Helfer, G. A., Costa, A. B., Barin, J. S., Müller, E. I. & Mello, P. A. (2021). A green and high throughput method for salt determination in crude oil using digital image-based colorimetry in a portable device. Fuel, 289(December 2020), 119941. https://doi.org/10.1016/j.fuel.2020.119941 DOI: https://doi.org/10.1016/j.fuel.2020.119941

Katona, R., Krójer, A., Locskai, R., Bátor, G. & Kovács, T. (2021). Comparison of analytical methods for measuring chloride content in crude oil. Applied Radiation and Isotopes Journal, 170, 109594. https://doi.org/10.1016/j.apradiso.2021.109594 DOI: https://doi.org/10.1016/j.apradiso.2021.109594

Kondash, A. J., Lauer, N. E. & Vengosh, A. (2018). The intensification of the water footprint of hydraulic fracturing. Science Advances, 4, 1–8. https://doi.org/10.1126/SCIADV.AAX8764 DOI: https://doi.org/10.1126/sciadv.aar5982

Lashkarbolooki, M., Ayatollahi, S. & Riazi, M. (2014). The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection. Journal of Chemical and Engineering Data, 59(11), 3624–3634. https://doi.org/10.1021/JE500730E DOI: https://doi.org/10.1021/je500730e

Li, N., Han, R. & Lu, X. (2018). Bibliometric analysis of research trends on solid waste reuse and recycling during 1992–2016. Resources, Conservation and Recycling, 130, 109–117. https://doi.org/10.1016/J.RESCONREC.2017.11.008 DOI: https://doi.org/10.1016/j.resconrec.2017.11.008

Mello, P. A., Pereira, J. S. F., Mesko, M. F., Barin, J. S. & Flores, E. M. M. (2012). Sample preparation methods for subsequent determination of metals and non-metals in crude oil — A review. Analytica Chimica Acta, 746, 15–36. https://doi.org/10.1016/j.aca.2012.08.009 DOI: https://doi.org/10.1016/j.aca.2012.08.009

Mitra, S., Sulakhe, S., Shown, B., Mandal, S. & Das, A. K. (2022). Organic chlorides in petroleum crude oil: Challenges for refinery and mitigations. ChemBioEng Reviews, 9(3), 319–332. https://doi.org/10.1002/CBEN.202100046 DOI: https://doi.org/10.1002/cben.202100046

Nelson, J. & Lopez-linares, F. (2019). Determination of chloride in crude oils by direct dilution using inductively coupled plasma tandem. J. Anal. At. Spectrom., 34, 1433–1438. https://doi.org/10.1039/c9ja00096h DOI: https://doi.org/10.1039/C9JA00096H

Pagliano, E., Gajdosechova, Z., Lopez-Linares, F. & Mester, Z. (2021). Conversion of inorganic chlorides into organochlorine compounds during crude oil distillation: Myth or reality? Energy and Fuels, 35(1), 894–897. https://doi.org/10.1021/ACS.ENERGYFUELS.0C03702 DOI: https://doi.org/10.1021/acs.energyfuels.0c03702

Parra-Barraza, H., Hernández-Montiel, D., Lizardi, J., Hernández, J., Herrera Urbina, R. & Valdez, M. A. (2003). The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions☆. Fuel, 82(8), 869–874. https://doi.org/10.1016/S0016-2361(03)00002-4 DOI: https://doi.org/10.1016/S0016-2361(03)00002-4

Pereira, J. S. F., Mello, P. A., Moraes, D. P., Duarte, F. A., Dressler, V. L., Knapp, G. & Flores, É. M. M. (2009). Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion. Spectrochimica Acta - Part B Atomic Spectroscopy, 64(6), 554–558. https://doi.org/10.1016/j.sab.2009.01.011 DOI: https://doi.org/10.1016/j.sab.2009.01.011

Robaina, N. F., Feiteira, F. N., Cassella, A. R. & Cassella, R. J. (2016). Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking. Journal of Chromatography A, 1458, 112–117. https://doi.org/10.1016/j.chroma.2016.06.066 DOI: https://doi.org/10.1016/j.chroma.2016.06.066

Santana, A. P. R., Nascimento, P. D. A., Guimarães, T. G. S., Menezes, I. M. N. R., Andrade, D. F., Oliveira, A. & Gonzalez, M. H. (2022). ( Re ) thinking towards a sustainable analytical chemistry : Part I : Inorganic elemental sample treatment , and Part II : Alternative solvents and extraction techniques ( Re ) thinking towards a sustainable analytical chemistry : Part I : Inorganic eleme. Trends in Analytical Chemistry, 152, 116596. https://doi.org/10.1016/j.trac.2022.116596 DOI: https://doi.org/10.1016/j.trac.2022.116596

Schutte, G. R. (2021). A economia política do conteúdo local no setor petrolífero de Lula a Temer. Economia e Sociedade, 30(1), 115–140. https://doi.org/10.1590/1982-3533.2020V30N1ART06 DOI: https://doi.org/10.1590/1982-3533.2020v30n1art06

Seeger, T. S., Muller, E. I., Mesko, M. F. & Duarte, F. A. (2019). Magnesium and calcium determination in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry. Fuel, 236, 1483–1488. https://doi.org/10.1016/j.fuel.2018.09.108 DOI: https://doi.org/10.1016/j.fuel.2018.09.108

Shishkova, I., Stratiev, D., Kolev, I. V., Nenov, S., Nedanovski, D., Atanassov, K., Ivanov, V. & Ribagin, S. (2022). Challenges in petroleum characterization—A review. Energies, 15(20), 7765. https://doi.org/10.3390/en15207765 DOI: https://doi.org/10.3390/en15207765

Silva, F. A., Rigui, B. R., Andriolli, C. R., Flores, E. M. M., Mello, P. A. & Picoloto, R. S. (2023). A miniaturized liquid-liquid extraction method for further Na, K, Ca, and Mg determination in crude oil by FAAS. Talanta, 257, 124297. https://doi.org/10.1016/J.TALANTA.2023.124297 DOI: https://doi.org/10.1016/j.talanta.2023.124297

Soares, A. S. F., da Costa Marques, M. R. & da Cunha Costa, L. (2022). Physical-chemical characterization and leaching studies involving drill cuttings generated in oil and gas pre-salt drilling activities. Environmental Science and Pollution Research, 1, 1–16. https://doi.org/10.1007/S11356-022-23398-7 DOI: https://doi.org/10.1007/s11356-022-23398-7

Souza, M. O., Ribeiro, M. A., Carneiro, M. T. W. D., Athayde, G. P. B., Castro, E. V. R. de, Silva, F. L. F., Matos, W. O. & Ferreira, R. de Q. (2015). Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract. Fuel, 154, 181–187. https://doi.org/10.1016/j.fuel.2015.03.079 DOI: https://doi.org/10.1016/j.fuel.2015.03.079

Speight, J. G. (2014). The chemistry and technology of petroleum (5th ed.). Cengage Learning. DOI: https://doi.org/10.1201/b16559

Stratiev, D., Shishkova, I., Dinkov, R., Nenov, S., Sotirov, S., Sotirova, E., Kolev, I., Ivanov, V., Ribagin, S., Atanassov, K., Stratiev, D., Yordanov, D. & Nedanovski, D. (2023). Prediction of petroleum viscosity from molecular weight and density. Fuel, 331(P1), 125679. https://doi.org/10.1016/j.fuel.2022.125679 DOI: https://doi.org/10.1016/j.fuel.2022.125679

Suliman, M. A., Olarewaju, A., Basheer, C. & Lee, H. K. (2021). Microextraction and its app lication for petroleum and crude oil samples. Journal of Chromatography A, 1636, 461795. https://doi.org/10.1016/j.chroma.2020.461795 DOI: https://doi.org/10.1016/j.chroma.2020.461795

Synnestvedt, M. B., Chen, C. & Holmes, J. H. (2005). CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA ... Annual Symposium Proceedings / AMIA Symposium. AMIA Symposium, February, 724–728. recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560567/

Van Eck, N. J. & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/S11192-009-0146-3/FIGURES/7 DOI: https://doi.org/10.1007/s11192-009-0146-3

Wu, B., Li, Y., Li, X., Zhu, J., Ma, R. & Hu, S. (2018). Organochlorine compounds with a low boiling point in desalted crude oil: Identification and conversion. Energy and Fuels, 32(6), 6475–6481. https://doi.org/10.1021/ACS.ENERGYFUELS.8B00205 DOI: https://doi.org/10.1021/acs.energyfuels.8b00205

Xu, Q., Chen, C., Rosswurm, K., Yao, T. & Janaswamy, S. (2016). A facile route to prepare cellulose-based films. Carbohydrate Polymers, 149, 274–281. https://doi.org/10.1016/J.CARBPOL.2016.04.114 DOI: https://doi.org/10.1016/j.carbpol.2016.04.114

Yao, T. C. & Porsche, F. W. (1959). Determination of sulfur and chlorine in petroleum liquids by X-Ray fluorescence. Analytical Chemistry, 31(12), 2010–2012. https://doi.org/10.1021/ac60156a038 DOI: https://doi.org/10.1021/ac60156a038

Zeinolabedini Hezave, A., Dorostkar, S., Ayatollahi, S., Nabipour, M. & Hemmateenejad, B. (2013). Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibria, 360, 139–145. https://doi.org/10.1016/J.FLUID.2013.09.025 DOI: https://doi.org/10.1016/j.fluid.2013.09.025

Published

2023-07-04

How to Cite

Negris, L., Santos, M. de F. P. dos, & Vicente, M. A. (2023). Bibliometric analysis and research trends on chloride determination in the oil industry . Brazilian Journal of Production Engineering, 9(3), 01–22. https://doi.org/10.47456/bjpe.v9i3.40905