Multiple perspective co-citation analysis on the Big Data analytics theme
DOI:
https://doi.org/10.47456/bjpe.v9i5.42739Keywords:
Big Data Analytics, CiteSpace, Multiple Perspective Co-Citation Analysis, Industry 4.0Abstract
One of the technologies of industry 4.0 is Big Data Analytics, which allows transforming a large number of different types of data into valuable information with potential for decision-making, innovation, among others. In this context, the objective of the article is to present an analysis of co-citations in multiple perspectives on the theme Big Data Analytics. For that, we used the hypothetical-deductive scientific explanation, a mixed qualitative and quantitative research approach and the method of analysis of co-citations in multiple perspectives, using the CiteSpace® software. We considered 11 full years of publications, and the ones already available in the current year of the Web of Science (WoS) search. We verified the main lines of research on the subject, the main authors, the prominent keywords, the timeline of studies in the main areas of research and the leading countries in publications. The study showed the existence of a strong relationship between Big Data Analytics and Supply Chain Management, being a great indication of the influence of this technology in the productive sector. Among the contributions, this research points out possibilities and advantages of applying large data analysis and its challenges.
Downloads
References
Agência Brasileira de Desenvolvimento Industrial. (2020). Indústria 4.0 – Uma Jornada de Transformação da Indústria. Recuperado de https://www.abdi.com.br/postagem/industria-4-0-uma-jornada-de-transformacao-da-industria
Associação Brasileira de Engenharia de Produção. (2023). A profissão. Retirado de https://portal.abepro.org.br/profissao/
Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131. DOI: https://doi.org/10.1016/j.ijpe.2016.08.018
Ankam, V. (2016). Big Data Analytics. 1a ed. Birmingham: Packt Publishing Ltd.
Boyd, D. & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15(5), 662-679. DOI: https://doi.org/10.1080/1369118X.2012.678878
Brandes, U. (2021). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249 DOI: https://doi.org/10.1080/0022250X.2001.9990249
Carvalho, M. C. M., de. (2000). A construção do saber científico: algumas proposições. Cap. 4, 63-86. Construindo o saber. Campinas: Papirus.
Chae, B. (2015). Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247-259. DOI: https://doi.org/10.1016/j.ijpe.2014.12.037
Chen, C. (2004, April). Searching for intelectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, Washington, DC, USA. DOI: https://doi.org/10.1073/pnas.0307513100
Chen, C. (2005, January). The centrality of pivotal points in the evolution of scientific networks. Proceedings of the International Conference on Intelligent User Interfaces, San Diego, CA, USA. DOI: https://doi.org/10.1145/1040830.1040859
Chen, C. (2006). CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317 DOI: https://doi.org/10.1002/asi.20317
Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computacional theory of scientific discovery. Journal of Informetrics, 3(3), 191-209. https://doi.org/10.1016/j.joi.2009.03.004 DOI: https://doi.org/10.1016/j.joi.2009.03.004
Chen, C., Ibekewe-Sanjuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inf.Sci. Technol. 61(7), 1386–1409. https://doi.org/10.1002/asi.21309 DOI: https://doi.org/10.1002/asi.21309
Chen, C. L. P. & Zhang, C. Y. (2014). Data-intensive: applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347. DOI: https://doi.org/10.1016/j.ins.2014.01.015
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 34(4), 1165-1188. https://doi.org/10.2307/41703503 DOI: https://doi.org/10.2307/41703503
Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Chain Creation in Supply Chain Management. Journal of Management Information Systems, 32(4) ,4-39. https://doi.org/10.1080/07421222.2015.1138364 DOI: https://doi.org/10.1080/07421222.2015.1138364
Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. DOI: https://doi.org/10.1007/s11036-013-0489-0
Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big data systems. In VLDB ENDOWMENT, 38, 1802-1813. DOI: https://doi.org/10.14778/2367502.2367519
Condie, T., Conway, N., Alvaro, T., & Hellerstein, J. M. (2010). Map Reduce Online. In USENIX Symposium on Networked Systems Design and Implementation, 7, 1-15.
Creswell, J. W. (1994). Research design: qualitative & quantitative approaches. 1a ed. Londres: Sage,
Freeman, L.C. (1977). A set of measuring centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543 DOI: https://doi.org/10.2307/3033543
Dittrich, J., Quiané-Ruiz, J. A., Jindal, A., Kargin, Y., Setty, V. & Schad, J. (2010). Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing). In VLDB ENDOWMENT, 36, 518-529. DOI: https://doi.org/10.14778/1920841.1920908
Gandomi, A. & Haider, M. (2015). Beyond the hype: Big Data concepts, methods and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 DOI: https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Gartner. (2021, julho 4). Gartner forecasts worldwide public cloud end-user spending to grow 18% in 2021. Retirado de https://www.gartner.com/en/newsroom/press-releases/2020-1117-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in2021
Gunasekaran, A., Papadoulos, T., Dubey, R., Wamba, S.F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big Data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70(1), 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004 DOI: https://doi.org/10.1016/j.jbusres.2016.08.004
Gupta, M. & George, J. F. (2016). Toward the development of a Big Data Analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004 DOI: https://doi.org/10.1016/j.im.2016.07.004
Hashem, I. A. T., Yaqook, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115. DOI: https://doi.org/10.1016/j.is.2014.07.006
Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and Big Data in Supply Chain Management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154(1), 72-80. https://doi.org/10.1016/j.ijpe.2014.04.018 DOI: https://doi.org/10.1016/j.ijpe.2014.04.018
International Business Machines Corporation. (2020, agosto 4). What is Big Data Analytics? Retirado de http://www.ibm.com/analytics/Hadoop/big-data-analytics.
Kleinberg, J. Bursty and hierarchical structure in streams. (2002, July). Proceedings of the International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 8. DOI: https://doi.org/10.1145/775047.775061
Kuhne, I. E. (2020). Aplicação de técnicas de Big Data Analytics às Smart Grids como forma de descoberta de padrões relevantes (Dissertação de Mestrado). Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, RS, Brasil. Recuperado de https://bibliodigital.unijui.edu.br:8443/xmlui/handle/123456789/6769
Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394. DOI: https://doi.org/10.1016/j.ijinfomgt.2014.02.002
Labirinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. In VLDB ENDOWMENT, 38, 2032-2033. DOI: https://doi.org/10.14778/2367502.2367572
Laudon, K. C. & Laudon, J.P. (2020). Management Information Systems: Managing the Digital Firm. 16a ed. New York: Pearson.
Li, X., Ma, E., & Qu, H. (2017). Knowledge mapping of hospitality research – A visual analysis using CiteSpace. International Journal of Hospitality Management, 60(1), 77-93. https://doi.org/10.1016/j.ijhm.2016.10.006 DOI: https://doi.org/10.1016/j.ijhm.2016.10.006
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute.
McAfee, A. & Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard Business Review, 90(10), 60-66, 68, 128.
Papadoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Wamba, S. F. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(1), 1108-1118. https://doi.org/10.1016/j.jclepro.2016.03.059 DOI: https://doi.org/10.1016/j.jclepro.2016.03.059
PricewaterhouseCoopers Brasil. (2016). Indústria 4.0: Digitalização como vantagem competitiva no Brasil. Pesquisa Global Indústria 4.0: Relatório Brasil, 1-38, 2016. Retirado de https://www.pwc.com.br/pt/publicacoes/servicos/assets/consultoria-negocios/2016/pwc-industry-4-survey-16.pdf
Raghupathi, W. & Raghupati, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 2(1), 1-10. DOI: https://doi.org/10.1186/2047-2501-2-3
Sagiroglu, S., Terzi, R., Canbay, Y., Colak, I. (2016, August). Big Data Issues in Smart Grid Systems. Proceedings of the International Conference On Renewable Energy Research and Applications, Birmingham, England, 5. DOI: https://doi.org/10.1109/ICRERA.2016.7884486
SAS. (2020a, setembro 27). Big Data: What it is and why it matter. Retirado de https://www.sas.com/en_us/insights/big-data/what-is-big-data.html
SAS. (2020b, setembro 27). Hadoop: What it is and why it matters. Retirado de https://www.sas.com/en_us/insights/big-data/Hadoop.html
Schwab, K. (2016). The Fourth Industrial Revolution. 1a ed. New York: Penguin Random House LLC.
Waller, M. A., & Fawcett, S. E. (2013). Click Here for a Data Scientist: Big Data, Predictive Analytics, and Theory Development in the Era of Maker Movement Supply Chain. Journal of Business Logistics, 34(4), 249-252. DOI: https://doi.org/10.1111/jbl.12024
Waller, M. A. & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77-84. DOI: https://doi.org/10.1111/jbl.12010
Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. DOI: https://doi.org/10.1016/j.ijpe.2014.12.031
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356-365. DOI: https://doi.org/10.1016/j.jbusres.2016.08.009
Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadoulos, T. (2016). Big Data Analytics in logistics and Supply Chain Management: Certain investigations for research and applications. International Journal of Productions Economics, 176(1), 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014 DOI: https://doi.org/10.1016/j.ijpe.2016.03.014
Wu, X., Zhu, X., Wu, G.Q., & Ding, W. (2014). Data mining with big data. IEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. DOI: https://doi.org/10.1109/TKDE.2013.109
Zikopoulos, P. & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. 1a ed. Toronto: McGraw-Hill.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Production Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.