Multiple perspective co-citation analysis on the Big Data analytics theme

Authors

  • Arthur Moura Vaz Engenharia de Produção, Universidade Federal de Catalão
  • Stella Jacyszyn Bachega Engenharia de Produção, Universidade Federal de Catalão
  • Dalton Matsuo Tavares Ciência da Computação, Universidade Federal de Catalão

DOI:

https://doi.org/10.47456/bjpe.v9i5.42739

Keywords:

Big Data Analytics, CiteSpace, Multiple Perspective Co-Citation Analysis, Industry 4.0

Abstract

One of the technologies of industry 4.0 is Big Data Analytics, which allows transforming a large number of different types of data into valuable information with potential for decision-making, innovation, among others. In this context, the objective of the article is to present an analysis of co-citations in multiple perspectives on the theme Big Data Analytics. For that, we used the hypothetical-deductive scientific explanation, a mixed qualitative and quantitative research approach and the method of analysis of co-citations in multiple perspectives, using the CiteSpace® software. We considered 11 full years of publications, and the ones already available in the current year of the Web of Science (WoS) search. We verified the main lines of research on the subject, the main authors, the prominent keywords, the timeline of studies in the main areas of research and the leading countries in publications. The study showed the existence of a strong relationship between Big Data Analytics and Supply Chain Management, being a great indication of the influence of this technology in the productive sector. Among the contributions, this research points out possibilities and advantages of applying large data analysis and its challenges.

Downloads

Download data is not yet available.

References

Agência Brasileira de Desenvolvimento Industrial. (2020). Indústria 4.0 – Uma Jornada de Transformação da Indústria. Recuperado de https://www.abdi.com.br/postagem/industria-4-0-uma-jornada-de-transformacao-da-industria

Associação Brasileira de Engenharia de Produção. (2023). A profissão. Retirado de https://portal.abepro.org.br/profissao/

Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131. DOI: https://doi.org/10.1016/j.ijpe.2016.08.018

Ankam, V. (2016). Big Data Analytics. 1a ed. Birmingham: Packt Publishing Ltd.

Boyd, D. & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15(5), 662-679. DOI: https://doi.org/10.1080/1369118X.2012.678878

Brandes, U. (2021). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249 DOI: https://doi.org/10.1080/0022250X.2001.9990249

Carvalho, M. C. M., de. (2000). A construção do saber científico: algumas proposições. Cap. 4, 63-86. Construindo o saber. Campinas: Papirus.

Chae, B. (2015). Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247-259. DOI: https://doi.org/10.1016/j.ijpe.2014.12.037

Chen, C. (2004, April). Searching for intelectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, Washington, DC, USA. DOI: https://doi.org/10.1073/pnas.0307513100

Chen, C. (2005, January). The centrality of pivotal points in the evolution of scientific networks. Proceedings of the International Conference on Intelligent User Interfaces, San Diego, CA, USA. DOI: https://doi.org/10.1145/1040830.1040859

Chen, C. (2006). CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317 DOI: https://doi.org/10.1002/asi.20317

Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computacional theory of scientific discovery. Journal of Informetrics, 3(3), 191-209. https://doi.org/10.1016/j.joi.2009.03.004 DOI: https://doi.org/10.1016/j.joi.2009.03.004

Chen, C., Ibekewe-Sanjuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inf.Sci. Technol. 61(7), 1386–1409. https://doi.org/10.1002/asi.21309 DOI: https://doi.org/10.1002/asi.21309

Chen, C. L. P. & Zhang, C. Y. (2014). Data-intensive: applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314-347. DOI: https://doi.org/10.1016/j.ins.2014.01.015

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 34(4), 1165-1188. https://doi.org/10.2307/41703503 DOI: https://doi.org/10.2307/41703503

Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Chain Creation in Supply Chain Management. Journal of Management Information Systems, 32(4) ,4-39. https://doi.org/10.1080/07421222.2015.1138364 DOI: https://doi.org/10.1080/07421222.2015.1138364

Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. DOI: https://doi.org/10.1007/s11036-013-0489-0

Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big data systems. In VLDB ENDOWMENT, 38, 1802-1813. DOI: https://doi.org/10.14778/2367502.2367519

Condie, T., Conway, N., Alvaro, T., & Hellerstein, J. M. (2010). Map Reduce Online. In USENIX Symposium on Networked Systems Design and Implementation, 7, 1-15.

Creswell, J. W. (1994). Research design: qualitative & quantitative approaches. 1a ed. Londres: Sage,

Freeman, L.C. (1977). A set of measuring centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543 DOI: https://doi.org/10.2307/3033543

Dittrich, J., Quiané-Ruiz, J. A., Jindal, A., Kargin, Y., Setty, V. & Schad, J. (2010). Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing). In VLDB ENDOWMENT, 36, 518-529. DOI: https://doi.org/10.14778/1920841.1920908

Gandomi, A. & Haider, M. (2015). Beyond the hype: Big Data concepts, methods and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 DOI: https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gartner. (2021, julho 4). Gartner forecasts worldwide public cloud end-user spending to grow 18% in 2021. Retirado de https://www.gartner.com/en/newsroom/press-releases/2020-1117-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in2021

Gunasekaran, A., Papadoulos, T., Dubey, R., Wamba, S.F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big Data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70(1), 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004 DOI: https://doi.org/10.1016/j.jbusres.2016.08.004

Gupta, M. & George, J. F. (2016). Toward the development of a Big Data Analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004 DOI: https://doi.org/10.1016/j.im.2016.07.004

Hashem, I. A. T., Yaqook, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115. DOI: https://doi.org/10.1016/j.is.2014.07.006

Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and Big Data in Supply Chain Management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154(1), 72-80. https://doi.org/10.1016/j.ijpe.2014.04.018 DOI: https://doi.org/10.1016/j.ijpe.2014.04.018

International Business Machines Corporation. (2020, agosto 4). What is Big Data Analytics? Retirado de http://www.ibm.com/analytics/Hadoop/big-data-analytics.

Kleinberg, J. Bursty and hierarchical structure in streams. (2002, July). Proceedings of the International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 8. DOI: https://doi.org/10.1145/775047.775061

Kuhne, I. E. (2020). Aplicação de técnicas de Big Data Analytics às Smart Grids como forma de descoberta de padrões relevantes (Dissertação de Mestrado). Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, RS, Brasil. Recuperado de https://bibliodigital.unijui.edu.br:8443/xmlui/handle/123456789/6769

Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394. DOI: https://doi.org/10.1016/j.ijinfomgt.2014.02.002

Labirinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. In VLDB ENDOWMENT, 38, 2032-2033. DOI: https://doi.org/10.14778/2367502.2367572

Laudon, K. C. & Laudon, J.P. (2020). Management Information Systems: Managing the Digital Firm. 16a ed. New York: Pearson.

Li, X., Ma, E., & Qu, H. (2017). Knowledge mapping of hospitality research – A visual analysis using CiteSpace. International Journal of Hospitality Management, 60(1), 77-93. https://doi.org/10.1016/j.ijhm.2016.10.006 DOI: https://doi.org/10.1016/j.ijhm.2016.10.006

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute.

McAfee, A. & Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard Business Review, 90(10), 60-66, 68, 128.

Papadoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Wamba, S. F. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(1), 1108-1118. https://doi.org/10.1016/j.jclepro.2016.03.059 DOI: https://doi.org/10.1016/j.jclepro.2016.03.059

PricewaterhouseCoopers Brasil. (2016). Indústria 4.0: Digitalização como vantagem competitiva no Brasil. Pesquisa Global Indústria 4.0: Relatório Brasil, 1-38, 2016. Retirado de https://www.pwc.com.br/pt/publicacoes/servicos/assets/consultoria-negocios/2016/pwc-industry-4-survey-16.pdf

Raghupathi, W. & Raghupati, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 2(1), 1-10. DOI: https://doi.org/10.1186/2047-2501-2-3

Sagiroglu, S., Terzi, R., Canbay, Y., Colak, I. (2016, August). Big Data Issues in Smart Grid Systems. Proceedings of the International Conference On Renewable Energy Research and Applications, Birmingham, England, 5. DOI: https://doi.org/10.1109/ICRERA.2016.7884486

SAS. (2020a, setembro 27). Big Data: What it is and why it matter. Retirado de https://www.sas.com/en_us/insights/big-data/what-is-big-data.html

SAS. (2020b, setembro 27). Hadoop: What it is and why it matters. Retirado de https://www.sas.com/en_us/insights/big-data/Hadoop.html

Schwab, K. (2016). The Fourth Industrial Revolution. 1a ed. New York: Penguin Random House LLC.

Waller, M. A., & Fawcett, S. E. (2013). Click Here for a Data Scientist: Big Data, Predictive Analytics, and Theory Development in the Era of Maker Movement Supply Chain. Journal of Business Logistics, 34(4), 249-252. DOI: https://doi.org/10.1111/jbl.12024

Waller, M. A. & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77-84. DOI: https://doi.org/10.1111/jbl.12010

Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. DOI: https://doi.org/10.1016/j.ijpe.2014.12.031

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356-365. DOI: https://doi.org/10.1016/j.jbusres.2016.08.009

Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadoulos, T. (2016). Big Data Analytics in logistics and Supply Chain Management: Certain investigations for research and applications. International Journal of Productions Economics, 176(1), 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014 DOI: https://doi.org/10.1016/j.ijpe.2016.03.014

Wu, X., Zhu, X., Wu, G.Q., & Ding, W. (2014). Data mining with big data. IEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. DOI: https://doi.org/10.1109/TKDE.2013.109

Zikopoulos, P. & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. 1a ed. Toronto: McGraw-Hill.

Published

2023-10-23

How to Cite

Vaz, A. M., Bachega, S. J., & Tavares, D. M. (2023). Multiple perspective co-citation analysis on the Big Data analytics theme. Brazilian Journal of Production Engineering, 9(5), 134–143. https://doi.org/10.47456/bjpe.v9i5.42739