Sistemas de painéis 3D da Argélia: Melhorando o conforto térmico e a eficiência energética em uma variedade de climas

Authors

  • Djamel Sifodil Université des Sciences et Technologies USTO-MB
  • Nabila Boualla Université des Sciences et Technologies USTO-MB
  • Abderrahmane Medjdoub Mokhtari Université des Sciences et Technologies USTO-MB
  • Mohamed Messaoudi Université des Sciences et Technologies USTO-MB
  • Mohamed Sofiane Ibka Université des Sciences et Technologies USTO-MB

DOI:

https://doi.org/10.47456/bjpe.v11i1.46824

Keywords:

Eficiência de conforto térmico, Otimização de aquecimento e resfriamento, Tecnologia de construção de painéis 3D, Tipos de envoltório de edifícios, Simulação dinâmica com TRNSYS, Redução do uso de energia em edifícios

Abstract

Este estudo avalia o conforto térmico e a eficiência energética em edifícios residenciais em Oran e Béchar, Argélia — regiões com climas contrastantes. Usando a simulação dinâmica TRNSYS, ele examina como três tipos de envoltórios de edifícios afetam a estabilidade da temperatura e as demandas de energia para aquecimento e resfriamento. As descobertas destacam que o design do envoltório do edifício e a escolha do material impactam significativamente a eficiência energética. A tecnologia avançada de painéis 3D demonstrou economia de energia notável, reduzindo o consumo em até 29% em comparação com materiais tradicionais, ao mesmo tempo em que manteve o conforto térmico em ambos os climas. O estudo investiga ainda mais o desempenho energético de painéis 3D, paredes duplas de tijolos e paredes duplas isoladas, mostrando que os sistemas de painéis 3D reduzem consistentemente o consumo de energia ao reduzir as necessidades de aquecimento e resfriamento. Esses resultados ressaltam o valor de projetos responsivos ao clima e estratégias de resfriamento passivo, posicionando a tecnologia de painéis 3D como uma solução promissora para aumentar o conforto térmico e reduzir o uso de energia no setor residencial da Argélia.

Downloads

Author Biographies

Djamel Sifodil, Université des Sciences et Technologies USTO-MB

Djamel Sifodil is a researcher at the LMST Laboratory of the University of Science and Technology of Oran Mohamed Boudiaf, Algeria. Specializing in energy efficiency and thermal comfort in buildings, he employs advanced dynamic simulations, such as TRNSYS, to explore innovative solutions for sustainable construction. His current research focuses on 3D panel technologies to enhance energy efficiency across diverse climates.

Nabila Boualla, Université des Sciences et Technologies USTO-MB

Boualla Nabila is a researcher at the LMST Laboratory of the University of Science and Technology of Oran Mohamed Boudiaf, Algeria. Her work focuses on enhancing energy efficiency and thermal comfort in residential buildings, with an emphasis on dynamic simulations such as TRNSYS. She explores innovative technologies, including 3D panel systems, to optimize energy performance in diverse climates. Currently, she is also involved in projects aimed at promoting sustainable architectural designs tailored to Algeria's climatic conditions

Abderrahmane Medjdoub Mokhtari, Université des Sciences et Technologies USTO-MB

M.A. Mokhtari is a researcher at the LMST Laboratory of the University of Science and Technology of Oran Mohamed Boudiaf, Algeria. Specializing in energy efficiency and thermal comfort, his studies leverage advanced tools like TRNSYS to analyze and optimize building performance under varying climatic conditions. He explores innovative technologies, including 3D panel systems, focusing on sustainable solutions to reduce energy consumption and enhance thermal comfort in the residential sector.

Mohamed Messaoudi, Université des Sciences et Technologies USTO-MB

Messaoudi Mohamed é pesquisador no Laboratório LMST da Universidade de Ciência e Tecnologia de Oran Mohamed Boudiaf, na Argélia. Seu trabalho concentra-se em soluções inovadoras para eficiência energética e conforto térmico em edifícios, utilizando ferramentas avançadas de simulação, como o TRNSYS. Ele tem explorado tecnologias modernas, como sistemas de painéis 3D, para reduzir o consumo de energia e melhorar o desempenho térmico em diferentes condições climáticas. Atualmente, está envolvido em iniciativas que promovem práticas de construção sustentável no setor residencial.

Mohamed Sofiane Ibka, Université des Sciences et Technologies USTO-MB

Mohamed Sofiane Ibbka is a researcher at the Signals and Images Laboratory of the University of Science and Technology of Oran Mohamed Boudiaf (USTO-MB), in Algeria. His research focuses on the application of advanced methods to improve energy efficiency and thermal comfort in residential buildings. Interested in integrating innovative technologies, he explores the use of 3D panel systems and other sustainable solutions to address the specific climate challenges of the region.

References

Agrawal, K. K., Agrawal, G. das, Misra, R., Bhardwaj, M., & Jamuwa, D. K. (2018). A review on effect of geometrical, flow and soil properties on the performance of Earth air tunnel heat exchanger. In Energy and Buildings, 176.https://doi.org/10.1016/j.enbuild.2018.07.035 DOI: https://doi.org/10.1016/j.enbuild.2018.07.035

Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: Increasing world-wide urban albedos to offset CO 2. Climatic Change, 94(3-4). https://doi.org/10.1007/s10584-008-9515-9 DOI: https://doi.org/10.1007/s10584-008-9515-9

Al-Qahtani, S., Koç, M., & Isaifan, R. J. (2023). Mycelium-Based Thermal Insulation for Domestic Cooling Footprint Reduction: A Review. Sustainability (Switzerland). 15(17). https://doi.org/10.3390/su151713217 DOI: https://doi.org/10.3390/su151713217

Alhorr, Y., Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., &Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. In International Journal of Sustainable Built Environment 5(1).https://doi.org/10.1016/j.ijsbe.2016.03.006 DOI: https://doi.org/10.1016/j.ijsbe.2016.03.006

Ali, R. A., Megahed, N. A., Shahda, M. M., & Hassan, A. M. (2023). Natural ventilation as a passive cooling strategy for multi-story buildings: analytic vertical skycourt formations. City, Territory and Architecture,10(1).https://doi.org/10.1186/s40410-023-00212-6 DOI: https://doi.org/10.1186/s40410-023-00212-6

Basyouni, Y. A., & Mahmoud, H. (2024). Affordable green materials for developed cool roof applications: A review. Renewable and Sustainable Energy Reviews, 202, 114722. https://doi.org/10.1016/j.rser.2024.114722 DOI: https://doi.org/10.1016/j.rser.2024.114722

Ben Youssef, A., lannes, laurenceelisabeth, Rault, C., &Soucat, A. (2021). Energy Consumption and Health Outcomes in Africa.SSRN Electronic Journal.https://doi.org/10.2139/ssrn.2864825 DOI: https://doi.org/10.2139/ssrn.2864825

Benzaama, M. H., Mokhtari, A. M., Lachi, M., Maalouf, C., & Menhoudj, S. (2021). Sunspot analysis under varying conditions climate: Distributed radiation on cooling floor and its effect on dynamic thermal behaviour. Solar Energy, 221.https://doi.org/10.1016/j.solener.2021.03.082 DOI: https://doi.org/10.1016/j.solener.2021.03.082

Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., Essah, E., Oliveira, A. C., del Caño, T., Rico, E., Lechón, J. L., Andrade, L., Mendes, A., & Atlı, Y. B. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering Science and Technology, an International Journal, 20(3). https://doi.org/10.1016/j.jestch.2017.01.009 DOI: https://doi.org/10.1016/j.jestch.2017.01.009

Blomqvist, S., Ödlund, L., & Rohdin, P. (2022). Understanding energy efficiency decisions in the building sector – A survey of barriers and drivers in Sweden. Cleaner Engineering and Technology, 9.https://doi.org/10.1016/j.clet.2022.100527 DOI: https://doi.org/10.1016/j.clet.2022.100527

Bosu, I., Mahmoud, H., Ookawara, S., & Hassan, H. (2023). Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review.In Solar Energy, 259. https://doi.org/10.1016/j.solener.2023.05.006 DOI: https://doi.org/10.1016/j.solener.2023.05.006

Boubou-BOuziani Naima. (2017). Potentiel et développement des énergies renouvelables en Algérie. Asjp.Cerist.Dz, 19.

Boulkedra, N. & Lakhal, N. (2021). Les Photovoltaïques:, Une Idée, Une Réalisation Et Un Impact Economique En Algérie. مجلة البشائر الاقتصادية. https://doi.org/10.33704/1748-007-002-070 DOI: https://doi.org/10.33704/1748-007-002-070

Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M., & Touaba, O. (2020). Status of renewable energy potential and utilization in Algeria. Journal of Cleaner Production, 246.https://doi.org/10.1016/j.jclepro.2019.119011 DOI: https://doi.org/10.1016/j.jclepro.2019.119011

Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade.Energy and Buildings, 128. https://doi.org/10.1016/j.enbuild.2016.06.089 DOI: https://doi.org/10.1016/j.enbuild.2016.06.089

D’Oca, S., Hong, T., & Langevin, J. (2018). The human dimensions of energy use in buildings: A review. Renewable and Sustainable Energy Reviews, 81. https://doi.org/10.1016/j.rser.2017.08.019 DOI: https://doi.org/10.1016/j.rser.2017.08.019

D’Amato, G., Cecchi, L., D’Amato, M., & Annesi-Maesano, I. (2014). Climate change and respiratory diseases. European Respiratory Review, 23(132).https://doi.org/10.1183/09059180.00001714 DOI: https://doi.org/10.1183/09059180.00001714

Faci, M., Oubadi, M., Matari, A., & Farhi, Y. (2018). Heat waves in Algeria: A potential risk. International Journal of Innovative Technical and Applied Sciences, 2(1).

Ghedamsi, R., Settou, N., Gouareh, A., Khamouli, A., Saifi, N., Recioui, B., & Dokkar, B. (2016). Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy and Buildings, 121. https://doi.org/10.1016/j.enbuild.2015.12.030 DOI: https://doi.org/10.1016/j.enbuild.2015.12.030

Good, C., Andresen, I., & Hestnes, A. G. (2015). Solar energy for net zero energy buildings - A comparison between solar thermal, PV and photovoltaic-thermal (PV/T) systems.Solar Energy, 122. https://doi.org/10.1016/j.solener.2015.10.013 DOI: https://doi.org/10.1016/j.solener.2015.10.013

Hamlili, F. Z. (2024). Evaluating the performance of buildings from the user’s perception and Life Cycle assessment: Case study of heritage buildings in hot and arid climate regions of Algeria (Doctoral dissertation, Faculté des sciences et technologie).

Harkouss, F., Fardoun, F., & Biwole, P. H. (2018).Passive design optimization of low energy buildings in different climates. Energy, 165. https://doi.org/10.1016/j.energy.2018.09.019 DOI: https://doi.org/10.1016/j.energy.2018.09.019

Hebri, A. (2018). Le programme des énergies renouvelables en Algérie Vers une efficacité énergétique d’ici 2030. مجلة دفاتر اقتصادية, 8(2).

Janssen, H., Ford, K., Gascoyne, B., Hill, R., Roberts, M., Bellis, M.A., Azam, S. (2023). Cold indoor temperatures and their association with health and well-being: a systematic literature review. Public Health,224.https://doi.org/10.1016/j.puhe.2023.09.006 DOI: https://doi.org/10.1016/j.puhe.2023.09.006

Jayakumar, P. (2009). Solar Energy Resource Assessment Handbook. Asian and Pacific Centre for Transfer of Technology of the United Nations – Economic and Social Commission for Asia and the Pacific (ESCAP), September.

Lin, J., Lyu, M., Wang, Y., Webster, B., & Shi, D. (2022).Spectral Selective Solar Harvesting and Energy Generation via Transparent Building Skin. In Advanced Materials in Smart Building Skins for Sustainability: From Nano to Macroscale. https://doi.org/10.1007/978-3-031-09695-2_1 DOI: https://doi.org/10.1007/978-3-031-09695-2_1

Ling, H. M., Yew, M. C., Yew, M. K., & Saw, L. H. (2024).Analyzing recent active and passive cool roofing technology in buildings, including challenges and optimization approaches. Journal of Building Engineering, 89, 109326.https://doi.org/https://doi.org/10.1016/j.jobe.2024.109326 DOI: https://doi.org/10.1016/j.jobe.2024.109326

Liu, G., Chen, H., Yuan, Y., & Song, C. (2024). Indoor thermal environment and human health: A systematic review. In Renewable and Sustainable Energy Reviews, 191.https://doi.org/10.1016/j.rser.2023.114164 DOI: https://doi.org/10.1016/j.rser.2023.114164

Makhloufi, A. W. & Louafi, S. (2022). The Impact of Glazing Types and Window-to-Wall Ratios on Energy Consumption in Semi-arid, Mediterranean and Arid Climates. Prostor, 30(2(64)).https://doi.org/10.31522/p.30.2(64).1 DOI: https://doi.org/10.31522/p.30.2(64).1

Mancini, F. & Basso, G. lo.(2020). How climate change affects the building energy consumptions due to cooling, heating, and electricity demands of Italian residential sector. Energies, 13(2).https://doi.org/10.3390/en13020410 DOI: https://doi.org/10.3390/en13020410

Mellah, A., Abdelhafid, Y., & Benmalek, A. (2019). Energy consumption policy, GHG emissions and climate change impact in Algeria. Journal of Environmental Treatment Techniques, 7(3).

Menhoudj, S., Mokhtari, A. M., Benzaama, M. H., Maalouf, C., Lachi, M., & Makhlouf, M. (2018). Study of the energy performance of an earth—Air heat exchanger for refreshing buildings in Algeria. Energy and Buildings, 158. https://doi.org/10.1016/j.enbuild.2017.11.056 DOI: https://doi.org/10.1016/j.enbuild.2017.11.056

Mohammed, M. N., Alghoul, M. A., Abulqasem, K., Mustafa, A., Glaisa, K., Ooshaksaraei, P., Yahya, M., Zaharim, A., & Sopian, K. (2011). TRNSYS simulation of solar water heating system in Iraq. Recent Researches in Geography, Geology, Energy, Environment and Biomedicine - Proc. of the 4th WSEAS Int. Conf. on EMESEG’11, 2nd Int. Conf. on WORLD-GEO’11, 5th Int. Conf. on EDEB’11.

Mokhtara, C., Negrou, B., Settou, N., Gouareh, A., & Settou, B. (2019). Pathways to plus-energy buildings in Algeria: Design optimization method based on GIS and multi-criteria decision-making. Energy Procedia,162.https://doi.org/10.1016/j.egypro.2019.04.019 DOI: https://doi.org/10.1016/j.egypro.2019.04.019

Mokhtara, C., Negrou, B., Bouferrouk, A., Yao, Y., Settou, N., & Ramadan, M. (2020). Integrated supply–demand energy management for optimal design of off-grid hybrid renewable energy systems for residential electrification in arid climates. Energy Conversion and Management, 221. https://doi.org/10.1016/j.enconman.2020.113192 DOI: https://doi.org/10.1016/j.enconman.2020.113192

Mokrani, O. B. E., Dida, M., & Settou, B. (2024). Promotion of Solar Energies in Southern Algeria Strategies and Perspectives. Handbook of Environmental Chemistry, 131. https://doi.org/10.1007/698_2023_1008 DOI: https://doi.org/10.1007/698_2023_1008

Morlet, C., & Keirstead, J. (2013).A comparative analysis of urban energy governance in four European cities.Energy Policy, 61.https://doi.org/10.1016/j.enpol.2013.06.085 DOI: https://doi.org/10.1016/j.enpol.2013.06.085

Nasrollahzadeh, N. (2021). Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.103418 DOI: https://doi.org/10.1016/j.jobe.2021.103418

Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Muhd, M. Z. (2015).A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries).In Renewable and Sustainable Energy Reviews, 43.https://doi.org/10.1016/j.rser.2014.11.066 DOI: https://doi.org/10.1016/j.rser.2014.11.066

Pang, W., Zhang, Q., Cui, Y., Zhang, L., Yu, H., Zhang, X., Zhang, Y., & Yan, H. (2019). Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector. Energy, 187.https://doi.org/10.1016/j.energy.2019.115990 DOI: https://doi.org/10.1016/j.energy.2019.115990

Papachristos, G. (2015). Household electricity consumption and CO2 emissions in the Netherlands: A model-based analysis. Energy and Buildings, 86. https://doi.org/10.1016/j.enbuild.2014.09.077 DOI: https://doi.org/10.1016/j.enbuild.2014.09.077

Papadakis, N., & Katsaprakakis, D. al. (2023). A Review of Energy Efficiency Interventions in Public Buildings. Energies, 16(17). https://doi.org/10.3390/en16176329 DOI: https://doi.org/10.3390/en16176329

Pressman, N. E. P. (1996). Sustainable winter cities: Future directions for planning, policy and design. Atmospheric Environment, 30(3). https://doi.org/10.1016/1352-2310(95)00012-7 DOI: https://doi.org/10.1016/1352-2310(95)00012-7

Rane, N., Choudhary, S., & Rane, J. (2023). Enhancing thermal comfort through leading-edge design, monitoring, and optimization technologies: A review. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4642529 DOI: https://doi.org/10.2139/ssrn.4642529

Sadineni, S. B., Madala, S., & Boehm, R. F. (2011). Passive building energy savings: A review of building envelope components. In Renewable and Sustainable Energy Reviews, 15(8). https://doi.org/10.1016/j.rser.2011.07.014 DOI: https://doi.org/10.1016/j.rser.2011.07.014

Sakhri, N., Osra, O. A., Alsaygh, F. S., Almutery, S. B., & Menni, Y. (2023).Optimizing indoor thermal comfort with wind towers and earth to air heat exchangers: a sustainable solution for energy-efficient housing. International Journal of Low-Carbon Technologies, 18.https://doi.org/10.1093/ijlct/ctad084 DOI: https://doi.org/10.1093/ijlct/ctad084

Seppänen, O., Fisk, W., & Lei, Q. (2006). Effect of Temperature on Task Performance in Office Environment. Lawrence Berkeley National Laboratory.

Silvero, F., Lops, C., Montelpare, S., & Rodrigues, F. (2019). Generation and assessment of local climatic data from numerical meteorological codes for calibration of building energy models. Energy and Buildings, 188–189. https://doi.org/10.1016/j.enbuild.2019.02.001 DOI: https://doi.org/10.1016/j.enbuild.2019.02.001

Singh, A., Mizdrak, A., Daniel, L. et al. (2022). Estimating cardiovascular health gains from eradicating indoor cold in Australia. Environ Health 21, 54. https://doi.org/10.1186/s12940-022-00865-9 DOI: https://doi.org/10.1186/s12940-022-00865-9

Soumia, O., AbdElKader, H., & Djaffar, S. (2022). Evaluation of old building processes in the housing of Algeria’s arid regions and its improvement by integration of passive downdraught evaporative cooling. Energy and Buildings, 273.https://doi.org/10.1016/j.enbuild.2022.112395 DOI: https://doi.org/10.1016/j.enbuild.2022.112395

Stambouli, A. B. (2011). Promotion of renewable energies in Algeria: Strategies and perspectives. In Renewable and Sustainable Energy Reviews, 15(2).https://doi.org/10.1016/j.rser.2010.11.017 DOI: https://doi.org/10.1016/j.rser.2010.11.017

Taherian, H., & Peters, R. W. (2023). Advanced Active and Passive Methods in Residential Energy Efficiency. Energies, 16(9). https://doi.org/10.3390/en16093905 DOI: https://doi.org/10.3390/en16093905

Thibaut Vermeulen. (2014). Optimisation de formes urbaines soumises au rayonnement solaire. Thesis Universite de Technologie de Compiègne.

vanHoof, J., Mazej, M., & Hensen, J. L. M. (2010). Thermal comfort: Research and practice. Frontiers in Bioscience, 15(2). https://doi.org/10.2741/3645 DOI: https://doi.org/10.2741/3645

Vonžudaitė, O., Martišauskas, L., Bakas, R., Urbonienė, S., & Urbonas, R. (2023). Optimization of Heat Pump Systems in Buildings by Minimizing Costs and CO2 Emissions. Applied Sciences, 13(8).https://doi.org/10.3390/app13084864 DOI: https://doi.org/10.3390/app13084864

Xiang, J., Liu, H., Li, X., Jones, P., & Perisoglou, E. (2023). Multi-Objective Optimization of Ultra-Low Energy Housing in Hot Summer Cold Winter Climate Zone of China Based on a Probabilistic Behavioral Model. Buildings, 13(5).https://doi.org/10.3390/buildings13051172 DOI: https://doi.org/10.3390/buildings13051172

Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115. https://doi.org/10.1016/j.apenergy.2013.10.062 DOI: https://doi.org/10.1016/j.apenergy.2013.10.062

Zhang, H., Arens, E., Huizenga, C., & Han, T. (2010). Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Building and Environment, 45(2). https://doi.org/10.1016/j.buildenv.2009.06.018 DOI: https://doi.org/10.1016/j.buildenv.2009.06.018

Published

2025-01-30

How to Cite

Sifodil, D., Boualla, N., Mokhtari, A. M., Messaoudi, M., & Ibka, M. S. (2025). Sistemas de painéis 3D da Argélia: Melhorando o conforto térmico e a eficiência energética em uma variedade de climas. Brazilian Journal of Production Engineering, 11(1), 1–23. https://doi.org/10.47456/bjpe.v11i1.46824