Inteligencia de negocios como apoyo a la decisión: el estado del arte a través de ProKnow-C
DOI:
https://doi.org/10.47456/bjpe.v8i2.37106Palabras clave:
Business Intelligence, Toma de decisiones, Estrategia, Proknow-CResumen
La sociedad nunca ha dejado de verse afectada por transformaciones impulsadas por revoluciones en el tiempo, y la forma en que se manejan los datos en las organizaciones forma parte de estas transformaciones, reflejándose directamente en la asertividad de las decisiones que se toman. Desde este ángulo, este artículo abordará el estado del arte de la metodología de inteligencia de negocios (BI) en la toma de decisiones. El objetivo general comprende dilucidar la relevancia de implementar BI como base en la toma de decisiones estratégicas. Para lograr el objetivo se realizará una investigación bibliográfica, aplicando el método de formación del portafolio bibliográfico y análisis bibliométrico, Proknow-C. La búsqueda resultó en 3646 artículos. Se evidenció que las organizaciones deben evaluar el sistema más adecuado a sus necesidades de información, respetando el presupuesto estipulado dentro de la etapa de validación del proyecto, ya que el alto costo, además de la complejidad de los sistemas, son factores que dificultan la implementación. El éxito competitivo está ligado al entorno de decisión en el que se inserta el usuario. Cuanto más complejo es el entorno y más variables afectan al individuo, mayor es la dificultad para acceder a la información idónea para la toma de decisiones. En definitiva, la investigación logró su objetivo de dilucidar los impactos del BI en las empresas como proveedor de manejo estratégico de la información en base a métricas relacionadas con la planificación estratégica para ayudar en la toma de decisiones.
Descargas
Citas
Abusweilem, M. A. & Abualoush, S. (2019). The impact of knowledge management process and business intelligence on organizational performance. Growing Science, 2143-2156. http://doi.org/10.5267/j.msl.2019.6.020.
Affeldt, F. S. & Junior, S. D. da S., Jr. (2013). Information architecture analysis using business intelligence tools based on the information needs of executives. JISTEM – Journal of Information Systems and Technology Management, 10(2), 251-270. https://doi.org/10.4301/S1807-17752013000200004.
Afonso, M. H. F., Souza, J. V. de, Ensslin, S. R., & Ensslin, L. (2011). Como construir conhecimento sobre o tema de pesquisa? aplicação do processo proknow-c na busca de literatura sobre avaliação do desenvolvimento sustentável. Revista de Gestão Social e Ambiental, 5(2), 47-62. https://doi.org/10.24857/rgsa.v5i2.424.
Agiu, D., Mateescu, V., & Muntean, I. (2014). Business intelligence overview. Database system Journal, 5(3), 23-36. Recuperado de http://dbjournal.ro/archive/17/17_3.pdf
Alasiri, M. M. & Salameh, A. A. (2020). The impact of business intelligence (BI) and decision support systems (DSS): exploratory study, International Journal of Management (IJM), 11(5), 1001-1016. https://doi.org/ 10.34218/IJM.11.5.2020.092
Armstrong, P. (Ed), (2019). Dominando as tecnologias disruptivas: aprenda a compreender, avaliar e tomar melhores decisões que possa impactar o seu negócio (1a ed. p. 19-20). São Paulo: Autêntica Business.
Awasthi, A. M. & Pandita, D. (2019). Role of business intelligence and analytics: analysis of data driven decision. International Journal of Innovate Technology and Exploring Engineering (IJITEE), 8(12), 1506-1510. https://doi.org/10.35940/ijitee.l3101.1081219.
Boyton, J., Ayscough, P., Kaveri, D., & Chiong, R. (2015). Suboptimal business intelligence implementations: understanding and addressing the problems. Journal of Systems and Information Technology, 17(3), 307-320. https://doi.org/10.1108/JSIT-03-2015-0023.
Delen, D., Turban, E., & Sharda, R. (Ed). (2015). Business intelligence and analytics: systems for decision support (10th ed). Oklahoma: Pearson.
Ensslin, L., Graziano, L. A. G., Dutra, A., & Dezem, V. (2017). Construção de conhecimento sobre o tema avaliação de desempenho da comunicação em órgãos públicos: uma análise da literatura internacional. Revista Ibero-Americana de Estrategia – RIAE, 16(3), 111-129. https://doi.org/10.5585/riae.v16i3.2519.
Ensslin, S. R.; Ensslin, L., Yamakawa, E. K., Nagaoka, M. da P. T., Aoki, A. R., & Siebert, L. C. (2014). Processo estruturado de revisão da literatura e análise bibliométrica sobre avaliação de desempenho de processos de implementação de eficiência energética. Revista Brasileira de Energia, 20(1), 21-50. Recuperado de https://sbpe.org.br/index.php/rbe/article/view/319.
Fontana, L. P. B. (2020). Modelo multicritério construtivista para apoiar a gestão organizacional em uma empresa concessionária de serviços de saneamento no Brasil. (Dissertação de mestrado). Universidade do Sul de Santa Catarina, Florianópolis, Santa Catarina, Brasil.
Godínez, J. A. B., Coloapa, J. L. S., Márquez, M. S. U., Mejía, A. G., & Gonzaga, E. A. (2020). Identifying the main factors involved in business intelligence implementation in SMEs. Bulletin of Electrical Engineering and Informaties. 9(1), 304-310. https://doi.org/10.11591/eei.v9i1.1459.
Grubljesic, T. & Jaklic, J. (2015). Conceptualization of the business intelligence extended use model. Journal of Computer Information Systems, 55(3), 72-82. https://doi.org/10.1080/08874417.2015.11645774.
Isik, O., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: the roles of BI capabilities and decision environments. Information & Management, 50(1), 13-23. https://doi.org/10.1016/j.im.2012.12.001.
Lacerda, R. T. de O., Ensslin, L., & Ensslin, S. R. (2012). Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, 19(1), 59-78. https://doi.org/10.1590/S0104-530X2012000100005.
Lizot, M. Junior, P. P. de A., Magacho, C. S., Bortoluzzi, S. C., & Viero, A. (2016). Avaliação de desempenho na gestão da produção: análise bibliométrica e sistêmica da literatura internacional. Revistas Gestão Industrial. 12(3), 65-84. https://doi.org/10.3895/gi.v12n3.4377.
Nedelcu, B. (2013), Business intelligence systems. Database system Journal, 4(4), 12-20. Recuperado de http://www.dbjournal.ro/archive/14/14.pdf#page=13
Olexová, C. (2014). Business intelligence adoption: a case study in the retail chain. WSEAS Transactions on Business and Economics, 11(1), 95-106. Recuperado de http://www.wseas.us/journal/pdf/economics/2014/a185707-163.
Olszak, C. M. & Ziemba, E. (2012). Critical sucess factors for implementing business intelligence systems in small and medium enterprises on the example of upper Silesia, Poland. Interdisciplinary Journal of Information, Knowledge, and Management, 7, 130-150. https://doi.org/10.28945 / 1584.
Popovic, A., Hackney, R., Coelho, P. S., & Jaklic, J. (2012). Towards business intelligence systems success: effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017.
Reina, D. R. M., Ensslin, S. R., Ensslin, L., & Reina, D. (2014). Seleção e análise do perfil da produção científica sobre o tema seleção de projetos. REGE, 21(1), 3-25. https://doi.org/10.5700/rege516.
Rogers D. L. (Ed). (2017). Transformação digital: repensando o seu negócio para era digital (2nd ed. p. 121-130). São Paulo: Autêntica Business.
Santos, A. I. dos, Schenatto, F. J. A., & Oliveira, G. A. (2017). Metodologia proknow-C para construir o conhecimento acerca de previsão de demanda utilizando séries temporais. Ponta Grossa/PR. VII Congresso Brasileiro de Engenharia de Produção.
Schwab, K. (Ed). (2016). A quarta revolução industrial (1a ed. p. 23). São Paulo: Edipro.
Sharma, R. S. & Djiaw, V. (2011). Realising the strategic impact of business intelligence tools. VINE, 41(2), 113-131. https://doi.org/10.1108/03055721111134772.
Silva, L. H. B. da, Bezerra, J. C. C., Rios, F. F. S., & Amorim, F. A. (2019). Desenvolvimento de dashboards interativos utilizando ferramentas de business intelligence no ms excel para auxilio na tomada de decisão empresarial. Revista Expressão Católica, 7(1), 27-38. http://dx.doi.org/10.25190/rec.v7i1.2129.
Vaish, P., Shrivastava, S., & Sen, S. (2020). Business intelligence: escalation of data warehousing and data mining for effective decision making. International Jounal of Advanced Science and Technology, 29(5), 1377-1388. Recuperado de http://sersc.org/journals/index.php/IJAST/article/view/8178.
Vaz, C. R., Tasca, J. E., Ensslin, L., Ensslin, S. R., & Selig, P. M. (2012). Avaliação de desempenho na gestão estratégica organizacional: seleção de um referencial teórico de pesquisa e análise bibliométrica. Revista Gestão Industrial. 8(4), 121-153. https://doi.org/10.3895/S1808-04482012000400008.
Vergara, S. C. (Ed), (2016). Projetos e relatórios de pesquisa em administração (16th ed.). São Paulo: Editora Atlas.
Vieira, E. L., Bortoluzzi, S. C., Costa, S. E. G. da., & Lima, E. P. de. (2017). Processo estruturado de revisão da literatura e análise bibliométrica sobre avaliação do nível de maturidade das empresas na utilização de ferramentas lean manufacturing. Revista Latino-Americana de Inovação e Engenharia de Produção, 5(7), 64-79. http://dx.doi.org/10.5380/relainep.v5i7.55173.
Visinescu, L. L., Jones, M. C., & Sidorova, A. (2015). Improving decision quality: the role of business intelligence. Journal of Computer Information Systems, 57(1), 58-66. https://doi.org/10.1080/08874417.2016.1181494.
Yeoh, W. & Popovic, A. (2016). Extending the understanding of critical success factors for implementing business intelligence systems. Journal of the Association for Information Science and Technology, 67(1), 134-147. https://doi.org/10.1002/asi.23366.
Zanella, L. C. H. (2009). Metodologia de Estudo e Pesquisa em Administração. UFSC, Florianópolis, SC, Brasil.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Brazilian Journal of Production Engineering - BJPE
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.