Evaluación de la influencia de aditivos en fluido de perforación base agua con aplicabilidad en lutitas de formación calumbí
DOI:
https://doi.org/10.47456/bjpe.v8i3.37896Palabras clave:
fluidos de perforación, inhibidores, formaciones de reacción, reologíaResumen
Los fluidos son esenciales en la fase de perforación de pozos petroleros. La composición cambia según la aplicación. Para mejorar la eficiencia, la industria investiga diferentes aditivos para lodos de perforación con aplicabilidad en formaciones reactivas como la Formación Calumbi. Por lo tanto, este trabajo propone la formulación de un fluido de perforación de base acuosa con el fin de evaluar la reactividad en lutitas de la Formación Calumbí. Se evaluó la influencia de la adición de aditivos inhibidores (cloruro de potasio y polímero catiónico) y viscosificantes (goma xantana y carboximetilcelulosa). Las mediciones de las propiedades reológicas y la humectabilidad del fluido se realizaron de acuerdo con estándares específicos. Los resultados mostraron que el uso simultáneo de cloruro de potasio y polímero catiónico mostró baja reactividad en las lutitas de la Formación Calumbi. La presencia de goma xantana promovió una menor interacción entre el fluido y la roca. La formulación propuesta tiene características compatibles con una formación de gran relevancia para la Cuenca Sergipe-Alagoas.
Descargas
Citas
Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201-216. https://doi.org/10.1016/j.earscirev.2009.11.003
Annis, M. R. & Smith, M. V. (1996). Drilling Fluids Technology. Exxon Company, United States.
API RP, A. (2009). Recommended practice for field testing water-based drilling fluids. In API Recommentation 13B-1, ISO 10414: 2001.
ASTM D 5890 (2002). American Society for Testing Materials. Swell Index of Clay Mineral Component of Geosynthetic Clay Liners.
Azambuja Filho, N. C. (2020). Guidebook to the rift-drift sergipe-alagoas basin.
Beg, M., Sharma, S., & Ojha, U. (2018). Effect of cationic copolyelectrolyte additives on drilling fluids for shales. Journal of Petroleum Science and Engineering,161, 506-514. https://doi.org/10.1016/j.petrol.2017.12.009
Bentrad, H., Esmael, A., Nouar, C., Lefevre, A., & Ait-Messaoudene, N. (2017). Energy growth in Hagen–Poiseuille flow of Herschel–Bulkley fluid. Journal of Non-Newtonian Fluid Mechanics, 241, 43-59. https://doi.org/10.1016/j.jnnfm.2017.01.007
Dak, M., Verma, R. C., & Sharma, G. P. (2006). Flow characteristics of juice of “Totapuri” mangoes. Journal of Food Engineering, 76(4), 557-561. https://doi.org/10.1016/j.jfoodeng.2005.06.002
Deshpande A., Krishnan J. M., & Kumar, P. B. S. (2010). Rheology of Complex Fluids. Springer.
Feijó, F. J. (1994). Bacias de Sergipe-Alagoas. Boletim de Geociências da Petrobras.
Fiorot, G. H., & de Freitas Maciel, G. (2019). Free-surface laminar flow of a Herschel–Bulkley fluid over an inclined porous bed. Journal of Non-Newtonian Fluid Mechanics, 272(7), 104164. http://dx.doi.org/10.1016/j.jnnfm.2019.104164
Fornasier, F. C., Campo, M., Djuric, A., & Obando, D. M. (2017, May). Designing environmentally conforming drilling fluids: Challenges and considerations in Latin America. In SPE Latin America and Caribbean Petroleum Engineering Conference. OnePetro.
Forsans, T., Durand, C., Onaisi, A., Audibert-Hayet, A., & Ruffet, C. (1995). Influence of Clays on Borehole Stability: a Literature Survey Part One: Occurence of Drilling Problems. Physico-Chemical Description of Clays and of Their Interaction with Fluids. Revue de l'Institut Français du Pétrole, 50(2), 187-218.https://doi.org/10.2516/ogst:1995017
Gianni, R., Fusi, L., & Farina, A. (2022). Non stationary channel flow of a Herschel-Bulkley fluid. Journal of Mathematical Analysis and Applications, 510(1) 126002. https://doi.org/10.1016/j.jmaa.2022.126002
Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C., & Huang, Y. (2010). Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, 27(4), 772-793. https://doi.org/10.1016/j.marpetgeo.2009.12.002
Ji, G., & Zhu, J., (Eds.). (2020). Computational Fluid Dynamics Simulations. IntechOpen. https://doi.org/10.5772/intechopen.83278
Kelessidis, V. C., Maglione, R., Tsamantaki, C., & Aspirtakis, Y. (2006). Optimal determination of rheological parameters for Herschel–Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. Journal of Petroleum Science and Engineering, 53(3-4), 203-224. https://doi.org/10.1016/j.petrol.2006.06.004
Khodja, M., Khodja-Saber, M., Canselier, J. P., Cohaut, N., & Bergaya, F. (2010). Drilling fluid Technogy: performances and environmental considerations. In: Fuerstner I (ed) Product and Services; From R&D to final solutions. Intechopen, Croatia, 228-255.
Ksiazek, M., Sobczak, N., Mikulowski, B., Radziwill, W., & Surowiak, I. (2002). Wetting and bonding strength in Al/Al2O3 system. Materials Science and Engineering: A, 324(1-2), 162-167. https://doi.org/10.1016/S0921-5093(01)01305-3
Lambourne, R., & Strivens, T. A. (Eds.). (1999). Paint and surface coatings: theory and practice. Elsevier.
Lucena, D. V., & Souto, C. M. R. A. (2016). Hidratação de Formações Reativas de Regiões Petrolíferas: Uma Breve Revisão. RunPetro, 4(2), 23-32. https://repositorio.unp.br/index.php/runpetro/article/view/1291
Lucena, D. V., Amorim, L. V., & Lira, H. L. (2016). Reactive analysis of shales from Recôncavo Baiano. Cerâmica, 62, 163-169. https://doi.org/10.1590/0366-69132016623621976
Machado, J. C. V. Reologia e escoamento de fluidos-ênfase na indústria de petróleo; 2° edição. Editora Interciência, 30-31.
Martins, R. M., & Bombard, A. J. F. (2012). Rheology of fresh cement paste with superplasticizer and nanosilica admixtures studied by response surface methodology. Materials and structures, 45(6), 905-921. https://doi.org/10.1617/s11527-011-9807-9
Montilva, J. C., Van Oort, E., Brahim, R., Quintero, L., Dye, W., McDonald, M., ... & Luzardo, J. P. (2007, November). Using a low-salinity high-performance water-based drilling fluid for improved drilling performance in Lake Maracaibo. In SPE Annual Technical Conference and Exhibition. OnePetro.
Nascimento, R. C. A. de M., Amorim, L. V., Lira, D. S., & Lira, H. L. (2010). O fenômeno de prisão diferencial: Uma revisão da literatura. Revista Eletrônica de Materiais e Processos, 5(2) 76-87. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/188/319
Niu, M., Wang, S., Han, X., & Jiang, X. (2013). Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Applied Energy, 111, 234-239. https://doi.org/10.1016/j.apenergy.2013.04.089
Nóbrega, K. C., & Amorim, L. V. (2015). Influence of the Molar Mass of CMC in the Rheological Behavior and of Filtration of Clay Suspensions. Cerâmica, 61, 399-408. https://doi.org/10.1590/0366-69132015613601904
Petrobrás. (1998). Ensaio de viscosificante para fluido de perfuração base de água na exploração e produção de petróleo. Método, (2604).
Petrobras. (2009). Argila aditivada para fluido de perfuração a base de água na exploração e produção de petróleo. Método (2605).
Piau, J. M. (1996). Flow of a yield stress fluid in a long domain. Application to flow on an inclined plane. Journal of Rheology, 40(4), 711-723. https://doi.org/10.1122/1.550794
Qian, P., Guang, H., Xihua, Z., Cong, C., Zhaolong, G., Shujiao, S., ... & Jie, Y. (2021). Organic geochemistry, sedimentary environment, and organic matter enrichment of limestone-marlstone rhythms in the middle Permian northern Sichuan Basin, China. Marine and Petroleum Geology, 134, 105306. https://doi.org/10.1016/j.marpetgeo.2021.105306
Queiroz Neto, J. C., Biscaia Jr, E. C., & Petri, D. F. (2007). Adsorption behavior of polymer-based drilling fluids on SiO2. Química Nova, 30, 909-915. https://doi.org/10.1590/S0100-40422007000400028
Sengupta, S., & De, S. (2019). Couette–Poiseuille flow of a Bingham fluid through a channel overlying a porous layer. Journal of Non-Newtonian Fluid Mechanics, 265, 28-40. https://doi.org/10.1016/j.jnnfm.2019.01.002
She, H., Hu, Z., Qu, Z., Zhang, Y., & Guo, H. (2019). Determination of the hydration damage instability period in a shale borehole wall and its application to a Fuling shale gas reservoir in China. Geofluids, 1-17. https://doi.org/10.1155/2019/3016563
Silva, I. A., Silva, D. S., Buriti, B. M. A. B., Menezes, R. R., Neves, G. A., & Ferreira, H. C. (2019). Influence of Ca2+ in the rheological properties and filtration of bentonitic clay dispersions in aqueous drilling fluids. Cerâmica, 65, 216-221. http://dx.doi.org/10.1590/0366-69132019653742619
Silva, I. A., de Sousa, F. K. A., Menezes, R. R., Ferreira, H. S., Neves, G. D. A., & Ferreira, H. C. (2018). Influence of lithium (Li+), sodium (Na+) and potassium (K+) on the rheology of Brazilian bentonites for use in water-based drilling fluids. Cerâmica, 64, 109-119. http://dx.doi.org/10.1590/0366-69132018643692267
Thomas, J. E., Triggia, A. A., Correia, C. A., Verotto Filho, C., Xavier, J., & Machado, J. (2004). Fundamentos de Engenharia de Petróleo. ed. Interciência: Petrobrás, Rio de Janeiro, Brasil.
Vale, M. M., Curbelo, F. D. S., Braga, G. S., & Garnica, A. I. C. (2017). Estudo do comportamento reológico de fluidos de perfuração base água: efeito da concentração de NaCl. HOLOS, 1(33), 214-228. https://doi.org/10.15628/holos.2017.5162
Van Oort, E. (2003). On the physical and chemical stability of shales. Journal of Petroleum Science and Engineering, 38(3-4), 213-235. https://doi.org/10.1016/S0920-4105(03)00034-2
Vidal, E. L. F., Felix, T. F., Garcia, R. B., Costa, M., & Girão, J. H. S. (2007, October). Aplicação de novos polímeros catiônicos como inibidores de argila em fluidos de perfuração à base de água. In Instituto Brasileiro de Petróleo e Gás. Anais do 4º Congresso Brasileiro de P&D em Petróleo e Gás (pp. 21-24).
Warr, L. & Berger, J. (2007). Hydration of bentonite in natural waters: Application of “confined volume” wet-cell X-ray diffractometry. Physics and Chemistry of the Earth, Parts A/B/C, 32(1-7), 247-258. https://doi.org/10.1016/j.pce.2006.02.048
Yuan, Y. & Lee, T. R. (2013). Contact angle and wetting properties. In Surface science techniques (pp. 3-34). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_1
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Brazilian Journal of Production Engineering
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.