Evaluación del ciclo de vida de los ferrocarriles de mercancías: análisis crítico y propuesta de directrices

Autores/as

DOI:

https://doi.org/10.47456/bjpe.v10i2.44372

Palabras clave:

evaluación del ciclo de vida, ECV, ferrocarriles de mercancías, directrices

Resumen

Este estudio realiza una revisión de varios artículos dentro del contexto de los ferrocarriles, en los que se aplica la metodología de la evaluación del ciclo de vida (ECV). Utilizando la metodología ProKnow-C, se analizan siete artículos de revisión y 85 originales que aplican la metodología del ACV a los ferrocarriles, y se identifican varias lagunas importantes, principalmente relativas a la falta de divulgación de información sobre parámetros, software y otras decisiones importantes tomadas durante los trabajos que permitirían a otros investigadores replicar los resultados para compararlos con otros ferrocarriles o circunstancias diferentes. Actualmente, no existen normas ISO que aborden el ACV de los ferrocarriles, por lo que este trabajo pretende proporcionar un conjunto inicial de directrices, facilitando así la elaboración de dicha norma y proporcionando apoyo y orientación a los investigadores en este campo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bernardo Bicalho Carvalhaes, Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória Campus

Civil Engineer, with a specialization in Railway Engineering from PUC/MG and a master's degree in Civil/Transport Engineering from UFES. He has worked as a Railway Engineer at VALE S.A., developing technologies, coordinating research, managing contracts and auditing processes, among others. He was responsible for the Natural Gas project for converting diesel locomotives to use LNG, the research project Monitoring Tribological Parameters in the Performance of Diesel and Bi-fuel Engines and the Development of a Wagon for Transporting Liquefied Natural Gas project. He has worked as a process auditor for the Vale Production System (VPS), managing contracts with a budget of more than USD 10MM between Vale and outsourced companies, such as COMAP (Czech Republic), Energy Conversions Inc - ECI (USA), and in the development of new technologies with General Electric - GE, ElectroMotive Diesel - EMD, Praxair, among others. Professor at the Federal Institute of Espírito Santo, Vitória Campus. He has also worked as a lecturer at the Nova Venécia Campus, and as an inspector and contract manager for engineering projects and a member of the latter's real estate appraisal committee. Coordinator of a research project in partnership between IFES Campus Vitória and the company VALE S.A. between 2020 and 2023. 

João Luiz Calmon, Department of Environmental Engineering, Federal University of Espírito Santo (UFES), Vitória Campus

João Luiz Calmon is a Professor at UFES - Federal University of Espirito Santo), Vitória, Brazil. He received his BSE in civil engineering from UFES; his MSE in Production Engineering from Catholic Pontific University, Rio de Janeiro, Brazil; his Ph.D. in civil engineering from Catalonia Polytechnic University, Barcelona, Spain; and his Post-Doctorate degree from Eduardo Torroja Institute for Construction Science, Madrid, Spain. His research interests include project management; cleaner production; Finite element method applied to construction processes and structures – Thermal stress (dams, large foundations); high temperatures in structures; concrete technology, durability of structures, use of waste and industrial by-products as building materials, sustainable construction, and lice-cycle assessment.

Darli Rodrigues Vieira, Management Department, Université du Québec à Trois-Rivières

Darli Rodrigues Vieira, PhD, is a full professor of Project Management at the University of Quebec in Trois-Rivières (UQTR). He is currently the Director of the Master program in Project Management at this university. His current research focuses on project management, defense projects, product lifecycle management, new product development, supply chain management, strategy and management of operations. He has over 25 years of professional experience in a variaty of roles and industries. Also, he was the holder of the Research Chair in Management of Aeronautical Projects (2013 – 2019) and Head of the Management Department (2018-2021). He has over 60 refereed academic articles published, in journals including Journal of Cleaner Production, Project Management Journal, International Journal of Sustainable Aviation, International Journal of Product Lifecycle Management, International Journal Development Product, Journal of Modern Project Management, Construction and Building Materials, Journal of Construction Engineering and Management, International Journal of Sustainable Development & World Ecology, International Journal of Computer Applications, American Journal of Industrial and Business Management, International Journal of Supply Chain and Operations Resilience, International Journal of Productivity and Performance Management, Management Review Quarterly, International Journal of Business Information Systems, International Journal of Business and Data Analytics, International Journal of Managing Projects in Business, Journal of Simulation, International Journal of Lifecycle Performance Engineering, Journal of Building Engineering.

Alencar Soares Bravo, Université du Québec à Trois-Rivières (Canada)

Alencar Bravo holds a PhD in engineering from the Université du Québec à Trois-Rivières (Canada), and he is a professor of project management at the same university. He also holds two professional master’s degrees in mechanical engineering from the National Institute of Applied Sciences in Lyon (France) and the Technical University of Catalonia (Spain). He has significant experience in the field of industrial research and in development projects of high technical complexity, especially in the automotive and aeronautical fields. Other areas of research interest include eco-design tools, techniques and methods; life cycle management and total cost of ownership; uncertainty and risk management; customer behavior; and management and support systems in projects

Citas

Aria, M. & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. DOI: https://doi.org/10.1016/j.joi.2017.08.007

Association of American Railroads. (2023). Association of American Railroads. Freight rail & climate change 2023 Retrieved from https://www.aar.org/issue/freight-rail-climate-change/

Baitz, M., Albrecht, S., Brauner, E., Broadbent, C., Castellan, G., Conrath, P., & Fullana Palmer, P. (2013). LCA’s theory and practice: like ebony and ivory living in perfect harmony? In (Vol. 18, pp. 5-13): Springer. DOI: https://doi.org/10.1007/s11367-012-0476-x

Brander, M. & Wylie, C. (2011). The use of substitution in attributional life cycle assessment. Greenhouse Gas Measurement and Management, 1(3-4), 161-166. DOI: https://doi.org/10.1080/20430779.2011.637670

Diaz, M. A. H., Scouse, A., & Kelley, S. S. (2022). Environmental full cost accounting of alternative materials used for railroad ties: Treated-wood and concrete case study. Journal of Cleaner Production, 364, 132536. DOI: https://doi.org/10.1016/j.jclepro.2022.132536

Dincer, I. & Zamfirescu, C. (2016). A review of novel energy options for clean rail applications. Journal of Natural Gas Science and Engineering, 28, 461-478. DOI: https://doi.org/10.1016/j.jngse.2015.12.007

Du, G. & Karoumi, R. (2014). Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering, 10(3), 277-294. DOI: https://doi.org/10.1080/15732479.2012.749289

Earles, J. M. & Halog, A. (2011). Consequential life cycle assessment: a review. The international journal of life cycle assessment, 16, 445-453. DOI: https://doi.org/10.1007/s11367-011-0275-9

Edelen, A. & Ingwersen, W. W. (2018). The creation, management, and use of data quality information for life cycle assessment. The international journal of life cycle assessment, 23, 759-772. DOI: https://doi.org/10.1007/s11367-017-1348-1

Ekvall, T. & Finnveden, G. (2001). Allocation in ISO 14041—a critical review. Journal of Cleaner Production, 9(3), 197-208. DOI: https://doi.org/10.1016/S0959-6526(00)00052-4

Ekvall, T. & Weidema, B. P. (2004). System boundaries and input data in consequential life cycle inventory analysis. The international journal of life cycle assessment, 9, 161-171. DOI: https://doi.org/10.1007/BF02994190

Ensslin, L., Ensslin, S. R., Lacerda, R. T. d. O., & Tasca, J. E. (2010). ProKnow-C, Knowledge Development Process–Constructivist: processo técnico com patente de registro pendente junto ao INPI. Brasil:[sn].

Fridell, E., Bäckström, S., & Stripple, H. (2019). Considering infrastructure when calculating emissions for freight transportation. Transportation Research Part D: Transport and Environment, 69, 346-363. DOI: https://doi.org/10.1016/j.trd.2019.02.013

ISO. (2006a). 14040. Environmental management—life cycle assessment - principles and framework.

ISO. (2006b). 14044. Environmental management—Life cycle assessment—Requirements and guidelines.

ISO. (2014). 13315-2. Environmental management for concrete and concrete structures. Part 2: System boundary and inventory data

ISO. (2020). 22888. Railway applications — Concepts and basic requirements for the planning of railway operation in the event of earthquakes.

ISO. (2022). 23054-1. Railway applications — Track geometry quality. Part 1: Characterization of track geometry and track geometry quality.

ISO. (2024). 13315-1. Environmental management for concrete and concrete structures. Part 1: General principles.

Jiang, C., Wan, Y., Yang, H., & Zhang, A. (2021). Impacts of high-speed rail projects on CO2 emissions due to modal interactions: A review. Transportation Research Part D: Transport and Environment, 100, 103081. DOI: https://doi.org/10.1016/j.trd.2021.103081

Olugbenga, O., Kalyviotis, N., & Saxe, S. (2019). Embodied emissions in rail infrastructure: a critical literature review. Environmental Research Letters, 14(12), 123002.

Pagani, R. N., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105, 2109-2135. DOI: https://doi.org/10.1007/s11192-015-1744-x

Olugbenga, O., Kalyviotis, N., & Saxe, S. (2019). Embodied emissions in rail infrastructure: a critical literature review. Environmental Research Letters, 14(12), 123002. DOI: https://doi.org/10.1088/1748-9326/ab442f

Rebello, T. A., Roque, R. P., Gonçalves, R. F., Calmon, J. L., & Queiroz, L. M. (2021). Life cycle assessment of urban wastewater treatment plants: a critical analysis and guideline proposal. Water Science and Technology, 83(3), 501-514. DOI: https://doi.org/10.2166/wst.2020.608

Scopus (2023). http://www..scopus.com

Trevisan, L. & Bordignon, M. (2020). Screening Life Cycle Assessment to compare CO2 and Greenhouse Gases emissions of air, road, and rail transport: An exploratory study. Procedia CIRP, 90, 303-309. DOI: https://doi.org/10.1016/j.procir.2020.01.100

Vaz, C. R., Tasca, J. E., Ensslin, L., Ensslin, S. R., & Selig, P. M. (2012). Avaliação de desempenho na gestão estratégica organizacional: seleção de um referencial teórico de pesquisa e análise bibliométrica. Revista Gestão Industrial, 8(4). DOI: https://doi.org/10.3895/S1808-04482012000400008

Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656-666. DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.125

Weidema, B. P., Pizzol, M., Schmidt, J., & Thoma, G. (2018). Attributional or consequential life cycle assessment: a matter of social responsibility. Journal of Cleaner Production, 174, 305-314. DOI: https://doi.org/10.1016/j.jclepro.2017.10.340

Xiao, X., Cai, D., Lou, L., Shi, Y., & Xiao, F. (2021). Application of asphalt-based materials in railway systems: A review. Construction and Building Materials, 304, 124630. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124630

Web of Science (2023). http://www.webofscience.com

Zang, Y., Li, Y., Wang, C., Zhang, W., & Xiong, W. (2015). Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. Journal of Cleaner Production, 107, 676-692. DOI: https://doi.org/10.1016/j.jclepro.2015.05.060

Publicado

2024-06-07

Cómo citar

Carvalhaes, B. B., Calmon, J. L., Vieira, D. R., & Bravo, A. S. (2024). Evaluación del ciclo de vida de los ferrocarriles de mercancías: análisis crítico y propuesta de directrices. Brazilian Journal of Production Engineering, 10(2), 296–310. https://doi.org/10.47456/bjpe.v10i2.44372