Efecto de la variación del diseño en geometrías tpms fabricadas por manufactura aditiva

Autores/as

DOI:

https://doi.org/10.47456/bjpe.v10i3.45017

Palabras clave:

Fabricación Aditiva, Superficies Mínimas Triplemente Periódicas, TPMS, DLP, Procesamiento de Luz Digital

Resumen

La Fabricación Aditiva se ha convertido en un proceso útil para la fabricación de productos altamente personalizables y de gran complejidad. La tecnología DLP se utiliza desde áreas como medicina y odontología hasta la producción de calzado y equipos de seguridad, debido a su alta resolución en los detalles de las piezas producidas. Las estructuras Triply Periodic Minimal Surface (TPMS) se han estudiado desde el siglo 19 como propuestas de curvas donde no hay presencia de esquinas vivas, lo que dificulta la propagación de grietas cuando están sometidas a esfuerzos mecánicos. Debido a su alta complejidad, su fabricación era imposible hasta la aparición de tecnologías de fabricación aditiva. Al analizar estudios sobre las estructuras TPMS, se observa la falta de definición de los parámetros de diseño y su influencia en pruebas mecánicas de compresión, así como en comparaciones entre estructuras. Este estudio propuso evaluar las estructuras TPMS más estudiadas: gyroid, diamante y Schwarz P, y sus parámetros de diseño, como el tamaño de celda y el grosor de pared, para analizar sus comportamientos cuando se someten a pruebas de compresión. Los resultados obtenidos mostraron que el tamaño de celda unitaria no presentó significancia estadística, mientras que la geometría y el grosor de la pared mostraron una fuerte relación con los valores calculados de módulo de elasticidad.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Davi Salvini Chixaro, Universidade Federal do Paraná

Possui graduação em Engenharia de Produção pela Universidade Federal do Paraná (2019) e mestrado em Engenharia de Produção pela Universidade Federal do Paraná (2024). Atualmente é doutorando em Engenharia Mecânica e de Materiais pela Universidade Tecnológica Federal do Paraná, Curitiba. Tem experiência na área de Engenharia de Produção, com ênfase em Manufatura Aditiva em tecnologia FFF e DLP, desenvolvimento de produto, ensaios mecânicos, atuando principalmente nos seguintes temas: geometrias TPMS, polímeros flexíveis, ensaios mecânicos em polímeros e manufatura aditiva.

Fabiano Oscar Drozda, Universidade Federal do Paraná, Programa de Pós-graduação em Engenharia de Produção (PPGEP-UFPR)

Possui graduação em Engenharia de Materiais pela UEPG, mestrado em Engenharia e Ciência dos Materiais pela UEPG E doutorado em Engenharia Mecânica pela UFPR. Experiência de 16 anos em empresas multinacionais do setor cerâmico e da linha branca, atuando nas área de engenharia de processos, produto, linhas de montagem, qualidade e gerenciamento de projetos (Modelos Waterfall e Ágil). Atualmente é professor do Universidade Federal do Paraná-UFPR nas áreas de Ciência de Materiais e Mecânica dos Sólidos, Gestão e Controle da Qualidade, Gestão de Projetos, Processos de Fabricação e Lean Manufacturing. Tem interesse em pesquisas na área de Manufatura Aditiva e Machine Learning, Qualidade, Lean Digital

RicardoRicardo Júnior De Oliveira Silva, Universidade Federal do Paraná, Programa de Pós-graduação em Engenharia de Produção (PPGEP-UFPR)

Doutorando em Engenharia Mecânica pela Universidade Federal do Paraná (PGMEC UFPR-2029) na linha de Fabricação, Materiais e Sustentabilidade, onde pesquisa sobre reciclagem de materiais poliméricos para uso em Manufatura Aditiva. Mestre em Engenharia de Produção pela Universidade Federal do Paraná (PPGEP UFPR-2023) na linha de Inovação em Projetos, Produtos e Processos, onde estudou o efeito de diferentes porcentagens de preenchimento na absorção de energia de impacto em peças fabricadas em PLA por FFF. Graduado em Engenharia de Produção pelo Centro Universitário Internacional (2020). Tem experiência e interesse nas áreas de Manufatura Aditiva de polímeros, testes mecânicos em polímeros, reciclagem de materiais poliméricos e processos de fabricação.

Sérgio Fernando Lajarin, Universidade Federal do Paraná

Pós-doutorado em Eng. Mecânica pela UTFPR com trabalho na área de Manufatura Aditiva e tecnologia Assistiva. Possui doutorado em Engenharia Mecânica pela Universidade Federal do Paraná (UFPR) com trabalho de pesquisa na área de conformação de chapas de aços automotivos de alta resistência avançados. O trabalho de mestrado foi desenvolvido na área de Usinagem e sua aplicação da fabricação de próteses. Possui graduação em Engenharia da Computação. Possui experiência profissional em Projetos Mecânicos e para Construção Civil. Desenvolve pesquisas principalmente nos seguintes temas: Simulação e prática de processos de conformação, Aços automotivos avançados de alta resistência, Tecnologia Assistiva, Impressão 3D (Manufatura Aditiva), Desenvolvimento de Produtos e Aplicação da Impressão 3D na Área da Saúde. Coordena projeto de extensão voltado para treinamento de alunos e prototipagem. Atua como professor dedicação exclusiva na área de fabricação no Departamento de Engenharia Mecânica da UFPR (DEMEC) e como professor do Programa de Pós Graduação em Engenharia de Manufatura (PPGEM).

Citas

Altiparmak, S. C., Yardley, V. A., Shi, Z., & Lin, J. (2022). Extrusion-based additive manufacturing technologies: State of the art and future perspectives. Journal of Manufacturing Processes, 83, 607-636. https://doi.org/10.1016/j.jmapro.2022.09.032 DOI: https://doi.org/10.1016/j.jmapro.2022.09.032

Feng, J., Fu, J., Yao, X., & He, Y. (2022). Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001. https://doi.org/10.1088/2631-7990/ac5be6 DOI: https://doi.org/10.1088/2631-7990/ac5be6

Haney, C. W., & Siller, H. R. (2023). Anthropo-fidelic behavior of elastic-plastic lattice structures. Polymer Testing, 120, 107970. https://doi.org/10.1016/j.polymertesting.2023.107970 DOI: https://doi.org/10.1016/j.polymertesting.2023.107970

Hwang, B.-K., Kim, S.-K., Kim, J.-H., Kim, J.-D., & Lee, J.-M. (2020). Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures. International Journal of Mechanical Sciences, 180, 105657. https://doi.org/10.1016/j.ijmecsci.2020.105657 DOI: https://doi.org/10.1016/j.ijmecsci.2020.105657

Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., & Hague, R. J. M. (2018). Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer, 152, 62–71. https://doi.org/10.1016/j.polymer.2017.11.049 DOI: https://doi.org/10.1016/j.polymer.2017.11.049

Pereira, T., Jesus, A. V. de Valverde, G., Roland, R., & Oliveira Rodrigues, L. K. de. (2021). Análise da influência do padrão de preenchimento e da altura de camada de deposição nas propriedades mecânicas de peças fabricadas em PLA a partir de impressão 3D. DESAFIOS - Revista Interdisciplinar da Universidade Federal do Tocantins, 8(1), 95–103. https://doi.org/10.20873/uftv8-9605 DOI: https://doi.org/10.20873/uftv8-9605

Rahimidehgolan, F., & Altenhof, W. (2023). Compressive behavior and deformation mechanisms of rigid polymeric foams: A review. Composites Part B: Engineering, 253, 110513. https://doi.org/10.1016/j.compositesb.2023.110513Rodríguez-Panes, A., Claver, J., & Camacho, A. (2018). The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials, 11(8), 1333. https://doi.org/10.3390/ma11081333 DOI: https://doi.org/10.1016/j.compositesb.2023.110513

SAVA, R., APOSTOL, D. A., & CONSTANTINESCU, D. M. (2023). Evaluation of the mechanical behavior of 3D printed cellular metamaterials with special geometries. Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 24(1), 61–70. https://doi.org/10.59277/PRA-SER.A.24.1.08 DOI: https://doi.org/10.59277/PRA-SER.A.24.1.08

Shen, M., Qin, W., Xing, B., Zhao, W., Gao, S., Sun, Y., Jiao, T., & Zhao, Z. (2021). Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures. Journal of the European Ceramic Society, 41(2), 1481–1489. https://doi.org/10.1016/j.jeurceramsoc.2020.09.06 DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.09.062

Shi, K., Yang, W., Mei, H., Yan, Y., Xu, L., Cheng, L., & Zhang, L. (2023). Characterization and enhancement of quasi-static and shear mechanical properties of 3D printed lightweight SiOC lattices: Effects of structural design and parameters. Journal of the European Ceramic Society, 43(14), 5882–5893. https://doi.org/10.1016/j.jeurceramsoc.2023.06.06 DOI: https://doi.org/10.1016/j.jeurceramsoc.2023.06.066

Volpato, N. (2017). Manufatura Aditiva: Tecnologias e Aplicações da Impressão 3D (1o ed). Blucher.

Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021. https://doi.org/10.1016/j.matdes.2019.108021 DOI: https://doi.org/10.1016/j.matdes.2019.108021

Publicado

2024-09-12

Cómo citar

Chixaro, D. S., Drozda, F. O., Silva, R. J. D. O., & Lajarin, S. F. (2024). Efecto de la variación del diseño en geometrías tpms fabricadas por manufactura aditiva. Brazilian Journal of Production Engineering, 10(3), 418–434. https://doi.org/10.47456/bjpe.v10i3.45017