Principais métodos de tratamento da água produzida em unidades marítimas de produção de petróleo

Autores

  • Antonio Marcos Viana Junior Universidade Federal do Espírito Santo
  • Leandra Altoé Universidade Federal do Espírito Santo
  • Pedro Agostinho da Silva Baila Madeira Antunes Instituto Politécnico de Viseu
  • Antonio Augusto Martins Pereira Júnior Universidade Federal do Rio de Janeiro

DOI:

https://doi.org/10.21712/lajer.2023.v10.n1.p23-32

Palavras-chave:

petróleo e gás natural, produção marítima de petróleo, água produzida, métodos de tratamento da água, mitigação de impactos ambientais

Resumo

No processo de extração de óleo e gás, é gerado um subproduto denominado “água produzida”, que contém poluentes e precisa ser tratado antes de ser descartado no meio ambiente. O objetivo desse trabalho foi analisar os principais métodos de tratamento da água produzida em unidades marítimas de produção de petróleo. Esses tratamentos são divididos em primários, secundários e terciários. Entre os métodos primários, destacam-se: hidrociclone; separador API; e coagulação, floculação e sedimentação. Com relação aos métodos secundários, ressalta-se: flotação; e filtragem e adsorção. E quanto aos métodos terciários, enfatiza-se: processos de oxidação avançada; e membranas. Como o descarte no mar é a destinação mais comum da água produzida, é importante utilizar uma combinação adequada de tratamentos para mitigar os impactos ambientais dessa atividade.

Downloads

Não há dados estatísticos.

Referências

Abdulredha, M, Hussain, S and Abdullah, L (2020). ‘Overview on petroleum emulsions, formation, influence and demulsification treatment techniques’, Arabian Journal of Chemistry, v. 13, pp. 3403-3428. <https://doi.org/10.1016/j.arabjc.2018.11.014>.

Albornoz, LL, Soroka, VD and Silva, MCA (2021). ‘Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: Review’, Environmental Advances, v. 6, 100140. <https://doi.org/10.1016/j.envadv.2021.100140>

Amakiri, KT, Canon, AR, Molinari, M and Angelis-Dimakis, A (2022). ‘Review of oilfield produced water treatment technologies’, Chemosphere, v. 298, 134064. <https://doi.org/10.1016/j.chemosphere.2022.134064>.

Ambaye, Tg, Chebbi, A, Formicola, F, Prasad, S, Gomez, FH, Franzetti, A and Vaccari, M (2022). ‘Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives’, Chemosphere, v. 293, 133573. <https://doi.org/10.1016/j.chemosphere.2022.133572>.

Ameta, SC and Ameta, R (2018). Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Cambridge: Academic Press.

Ashraf, A, Liu, G, Yousaf, B, Arif, M, Ahmed, R, Irshad, S, Cheema, AI, Rashid, A and Gulzaman, H (2021). ‘Recent trend in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems’, Science of The Total Environment, v. 772, 145389. <https://doi.org/10.1016/j.scitotenv.2021.145389>.

Barambu, N, Bilad, M, Bustam, M, Kiki, K, Othman, M and Nordin, N (2021). ‘Development of membrane material for oily wastewater treatment: A review’, Ain Shams Egineering Journal, v.12, pp. 1361-1374. <https://doi.org/10.1016/j.asej.2020.08.027>.

Beyer, J, Goksøyr, A, Hjermann, Dø and Klungsøyr, J (2020). ‘Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf’, Marine Environmental Research, v. 162, 105155. <https://doi.org/10.1016/j.marenvres.2020.105155>.

CONAMA (2007). Resolução n° 393, de 8 de agosto de 2007. Brasília: CONAMA/MMA.

Dansawad, P, Yang, Y, Li, X, Shang, X, Li, Y, Guo, Z, Qing, Y, Zhao, S, You, S and Li, W (2022). ‘Smart membranes for oil/water emulsions separation: A review’, Advanced Membranes, v. 2, 100039. <https://doi.org/10.1016/j.advmem.2022.100039>.

Elehinafe, FB, Agboola, O, Vershimaa, AD and Bamigboye, GO (2022). ‘Insights on the advanced separation processes in water pollution analyses and wastewater treatment - A review’, South African Journal of Chemical Engineering, v. 42, pp. 188-200. <https://doi.org/10.1016/j.sajce.2022.08.004>.

Eray, E, Candelario, V, Boffa, V, Safafar, H, Munck, D, Zahrtmann, N, Kadrispahic, H and Jorgensen, M (2021). ‘A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives’, Chemical Engineering Journal, v. 414, 128826. <https://doi.org/10.1016/j.cej.2021.128826>.

Forain (2022). ‘Three phase separators’. Disponível em: <https://forain.net/products> (Acesso em 05 de dezembro de 2022).

Freeman, S, Booth, A, Sabbah, I, Tiller, R, Dierking, J, Klun, K., Rotter, A, Ben-David, E, Javidpour, J and Angel, D (2020). ‘Between source and sea: The role of wastewater treatment in reducing marine microplastics’, Journal of Enviromental Management, v. 266, 1101642. <https://doi.org/10.1016/j.jenvman.2020.110642>.

Geng, S, Mao, Z, Huang, Q and Yang, C (2021). ‘Process Intensification in Pneumatically Agitated Slurry Reactors’, Engineering, v. 7, pp. 304-325. <https://doi.org/10.1016/j.eng.2021.03.002>.

Ghafoori, S, Omar, M, Koutahzadeh, N, Zendehboudi, S, Malhas, RN, Mohamed, M, Al-Zubaidi, S, Redha, K, Baraki, F and Mehvar, M (2022). ‘New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review’, Separation and Purification Technology, v. 289, 120652. <https://doi.org/10.1016/j.seppur.2022.120652>.

Goh, PS, Wong, KC and Ismail, AF (2022). ‘Membrane technology: A versatile tool for saline wastewater treatment and resource recovery’, Desalination, v. 521, 115377. <https://doi.org/10.1016/j.desal.2021.115377>.

Ibrahim, MH, Banerjee, A, El-Naas, MH (2022). Petroleum Industry Wastewater Advanced and Sustainable Treatment Method. Amsterdam: Elsevier.

Jankowski, W, Li, Guoqiang, L, Kujawski, W and Kujawa, J (2022). ‘Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment’, Separation and Purification Technology, v. 302, 122101. <https://doi.org/10.1016/j.seppur.2022.122101>.

Jiménez, S, Micó, MM, Arnaldos, M, Medina, F and Contreras, S (2018). ‘State of the art of produced water treatment’, Chemosphere, v. 192, pp. 186-208. <https://doi.org/10.1016/j.chemosphere.2017.10.139>.

Joshi, N and Gururani, P (2022). ‘Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes’, Current Research in Green and Sustainable Chemistry, v. 5, 100306. <https://doi.org/10.1016/j.crgsc.2022.100306>.

Liu, Y, Lu, H, Li, Y, Pan, Z, Dai, P, Wang, H and Yang, Q (2021). ‘A review of treatment technologies for produced water in offshore oil and gas fields’, Science of The Total Environment, v. 775, 145485. <https://doi.org/10.1016/j.scitotenv.2021.145485>.

Naseem, T and Durrani, T (2021). ‘The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review’, Environmental Chemistry and Ecotoxicology, v. 3, pp. 59-75. <https://doi.org/10.1016/j.enceco.2020.12.001>.

Odiete, WE and Agunwamba, JC (2019). ‘Novel design methods for conventional oil-water separators’, Heliyon, v. 5, n. 5, e01620. <https://doi.org/10.1016/j.heliyon.2019.e01620>.

Peng, B, Yao, Z, Wang, X, Crombeen, M, Sweeney, DG and Tam, KC (2020). ‘Cellulose-based materials in wastewater treatment of petroleum industry’, Green Energy & Environment, v. 5, pp. 37-49. <https://doi.org/10.1016/j.gee.2019.09.003>.

Prakash, R, Majumder, SK and Singh, A (2018). ‘Flotation technique: Its mechanisms and design parameters’, Chemical Engineering and Processing - Process Intensification, v. 127, pp. 249-270. <https://doi.org/10.1016/j.cep.2018.03.029>.

Rajapakse, N, Zargar, M, Sen, T and Khiadani, M (2022). ‘Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review’, Separation and Purification Technology, v. 289, 120772. <https://doi.org/10.1016/j.seppur.2022.120772>.

Shaikh, S, Hassan, M, Nasser, M, Sayadi, S, Ayesh, A and Vasagar, V (2021). ‘A comprehensive review on harvesting of microalgae using Polyacrylamide-Based Flocculants: Potentials and challenges’, Separation and Purification Technology, v. 277, 119508. <https://doi.org/10.1016/j.seppur.2021.119508>.

Shang, Z and Zhu, J (2021). ‘Overview on plant extracts as green corrosion inhibitors in the oil and gas fields’, Journal of Material Research and Technology, v. 15, pp. 5078-5094. <https://doi.org/10.1016/j.jmrt.2021.10.095>.

Souza, JES, Araújo, BA, Sarmento, KKF, Rebouças, LD, Medeiros, KM and Lima, CAP (2021). ‘Zinc oxide polymeric nanocomposite membranes for wastewater treatment: Literature review’, Research, Society and Development, v. 10, n. 8, e46510817402. <https://doi.org/10.33448/rsd-v10i8.17402>.

Wang, C, Lu, Y, Song, C, Zhang, D, Rong, F and He, L (2022). ‘Separation of emulsified crude oil from produced water by gas flotation: A review’, Science of The Total Environment, v. 845, 157304. <https://doi.org/10.1016/j.scitotenv.2022.157304>.

Whitworth, AJ, Forbes, E, Verster, I, Jokovic, V, Awatey, B and Parbhakar-Fox, A (2022). ‘Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes’, Cleaner Engineering and Technology, v. 7, 100451. <https://doi.org/10.1016/j.clet.2022.100451>.

Zhao, C, Zhou, J, Yan, Y, Yang, L, Xing, G, Li, H, Wu, P, Wang, M and Zheng, H (2022). ‘Application of coagulation/flocculation in oily wastewater treatment: A review’, Science of The Total Environment, v. 765, 142795. <https://doi.org/10.1016/j.scitotenv.2020.142795>.

Downloads

Publicado

12-06-2023

Como Citar

Viana Junior, A. M., Altoé, L., Agostinho da Silva Baila Madeira Antunes, P., & Martins Pereira Júnior, A. A. (2023). Principais métodos de tratamento da água produzida em unidades marítimas de produção de petróleo. Latin American Journal of Energy Research, 10(1), 23–32. https://doi.org/10.21712/lajer.2023.v10.n1.p23-32

Edição

Seção

Petróleo e Gás Natural