Machine learning, inteligência artificial (IA), e a caracterização da subsuperfície: aplicações, possibilidades e riscos

Autores

  • Fábio Berton Equinor

DOI:

https://doi.org/10.21712/lajer.2023.v10.n2.p131-139

Palavras-chave:

Inteligência artificial, geologia do petróleo, análise de subsupérfície

Resumo

Soluções computacionais baseadas em machine learning e inteligência artificial (IA) têm sido adaptadas para o processamento e interpretação das informações de subsuperfície. Diante do que pode se tornar uma revolução tecnológica, é necessário pensar nos prováveis impactos das novas soluções para as atividades relacionadas à caracterização de reservatórios e sistemas petrolíferos. A IA já prova ter utilidade na indústria de óleo e gás ao lidar com grandes volumes de dados geológicos de padrão homogêneo, poupando o usuário humano de tarefas repetitivas. Essa característica faz com que os programas sejam úteis para o aumento de eficiência e da segurança do trabalho, mas da forma como funcionam atualmente, eles estão longe de serem capazes de lidar com a frequente complexidade geológica que pode representar riscos ou oportunidades em subsuperfície. Nem mesmo os melhores programas de IA são capazes de solucionar problemas inerentes aos dados indiretos, como a baixa resolução sísmica ou a baixa representatividade de poços. Tampouco conseguem encontrar soluções plausíveis para situações geológicas complexas. As novas soluções tecnológicas devem ser vistas como ferramentas para facilitar a vida dos profissionais de subsuperfície. Como qualquer ferramenta, sua existência tem propósitos específicos que não abrangem toda a complexidade dos sistemas geológicos. As interpretações geológicas derivadas de programas baseados em machine learning e IA devem ser avaliadas como aproximações geoestatísticas, não como a representação total da realidade construída a partir de múltiplos processos naturais. Essa característica faz com que os profissionais das geociências sigam sendo essenciais para aplicar as ferramentas de IA corretamente e filtrar as informações produzidas por elas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fábio Berton, Equinor

Geólogo de Reservatórios Sênior na Equinor Brasil

Referências

Arnø, M.L., Godhavn, J.-M., Aamo, O.M. 2022. Classification of Drilled Lithology in Real-Time Using Deep Learning with Online Calibration. SPE Drilling & Completion 37(1), 26-37, No SPE-204093-PA, doi:10.2118/204093-PA DOI: https://doi.org/10.2118/204093-PA

Baraboshkin, E.E., Panchenko, E.A., Demidov, A.E., Sharipova, Y.D., Gatina, N.N., Koroteev, D.A., 2022. Automated core description system application for sedimentological analysis. 21st International Sedimentological Congress, ID: T11-21082.

Berget, E.F. 2020. Redevelopment projects on the NCS: a statistical analysis of the Norwegian petroleum industry’s ability to generate unbiased production forecasts. Master’s Thesis, University of Stavanger.

Berton, F., Guedes, C.C.F., Vesely, F.F., Souza, M.C., Angulo, R.J., Rosa, M.L.C.C., Barboza, E.G. 2019. Quaternary coastal plains as reservoir analogs: wave-dominated sand-body heterogeneity from outcrop and ground-penetrating radar, central Santos Basin, Southeast Brazil. Sedimentary Geology 379, 97-113, doi:10.1016/j.sedgeo.2018.11.008. DOI: https://doi.org/10.1016/j.sedgeo.2018.11.008

Berton, F., Vesely, F.F. 2016. Stratigraphic evolution of Eocene clinoforms from northern Santos Basin, offshore Brazil: evaluating controlling factors on shelf-margin growth and deep-water sedimentation. Marine and Petroleum Geology 76, 356-372, doi:10.1016/j.marpetgeo.2016.09.007. DOI: https://doi.org/10.1016/j.marpetgeo.2016.09.007

Chen, L., Wang, L., Miao, J., Gao, H., Zhang, Y., Yao, Y., Bai, M., Mei, L., He, J. 2020. Review of the Application of Big Data and Artificial Intelligence in Geology. Journal of Physics: Conference Series 1684, No 012007, doi:10.1088/1742-6596/1684/1/012007. DOI: https://doi.org/10.1088/1742-6596/1684/1/012007

Cuddy, S. 2021. The benefits and dangers of using artificial intelligence in petrophysics. Artificial Intelligence in Geosciences 2, 1-10, doi:10.1016/j.aiig.2021.04.001. DOI: https://doi.org/10.1016/j.aiig.2021.04.001

dGB Earth Sciences. 2023. OpendTect. https://www.dgbes.com/software/opendtect (accessed in 16 July 2023).

Dolfsma, W. 2022. Different types of technological revolution. Opinion 10(4), No 1000200. doi: 10.35248/2311-3278.22.10.200

Fei, Y., Cai, H., Yang, J., Liang, J., Hu, G. 2023. Unsupervised pre-stack seismic facies analysis constrained by spatial continuity. Artificial Intelligence in Geosciences 4, 22-27, doi: 10.1016/j.aiig.2023.01.003. DOI: https://doi.org/10.1016/j.aiig.2023.01.003

Goldspot. 2022. MacDonald mines successfully intersects high-grade mineralization on the Earthlabs’s Alwyn Trend Target, SPJ property. https://www.goldspot.ca/news/macdonald-mines-successfully-intersects-high-grade-mineralization-on-the-earthlabss-alwyn-trend-target-spj-property/ (accessed 15 July 2023).

Howell, J.A., Martinius, A.W., Good, T.R. 2014. The application of outcrop analogues in geological modelling: a review, present status and future outlook. Geological Society, London, Special Publications 387, 1-25, doi:10.1144/SP387.12. DOI: https://doi.org/10.1144/SP387.12

Infante-Paez, L., Marfurt, K.J., Wallet, B. 2018. Igneous bodies that look like sedimentary features in seismic data: a way to avoid pitfalls in seismic interpretation. SEG International Exposition and 88th annual meeting, 1613-1617, doi:10.1190/segam2018-2998555.1. DOI: https://doi.org/10.1190/segam2018-2998555.1

Kim, J. 2022. Synthetic shear sonic log generation utilizing hybrid machine learning techniques. Artificial Intelligence in Geosciences 3, 53-70, doi:10.1016/j.aiig.2022.09.001. DOI: https://doi.org/10.1016/j.aiig.2022.09.001

Milkov, A.V., Navidi, W.C. 2020. Randomness, serendipity, and luck in petroleum exploration. AAPG Bulletin 104, 145-176, doi:10.1306/05061918128. DOI: https://doi.org/10.1306/05061918128

Msika, C., Findlay, R. 2023. Using a self-growing neural network approach to CCS monitoring. First Break 41, 63-67, doi:10.3997/1365-2397.fb2023044. DOI: https://doi.org/10.3997/1365-2397.fb2023044

Pandey, R.K., Aggarwal, S., Nath, G., Kumar, A., Vaferi, B. 2022. Metaheuristic algorithm integrated neural networks for well-test analyses of petroleum reservoir. Scientific Reports 12, No 16551, doi:10.1038/s41598-022-21075-w. DOI: https://doi.org/10.1038/s41598-022-21075-w

Perez, C. 2002. Technological revolutions and financial capital – the dynamics of bubbles and golden ages. Cheltenham: Edward Elgar Publishing Limited, ISBN: 978 1 84064 922 2. DOI: https://doi.org/10.4337/9781781005323

Rønevik, H.C., Jørstad, A., Lie, J.E. 2017. The discovery process behind the giant Johan Sverdrup Field. AAPG Memoir 113: Giant Fields of the decade 2000-2010, 195-220, doi:10.1306/13572008M1133687. DOI: https://doi.org/10.1306/13572008M1133687

Simons, M., Davies, A., Cowliff, L. 2023. Plausible characterization of subsurface geology is essential for the energy transition. First Break 41, 69-74, doi:10.3997/1365-2397.fb2023045. DOI: https://doi.org/10.3997/1365-2397.fb2023045

SLB. 2023. Automated lithology. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/drilling/surface-and-downhole-logging/logging-while-drilling-services/automated-lithology (accessed in 15 June 2023).

Swiegers, H., Macfarlane, R. 2022. The autonomous and digital future of offshore environments: Fugro. Oil & Gas Middle East, https://www.oilandgasmiddleeast.com/products-services/offshore-environment (accessed in 15 June 2023).

Vakarelov, B.K., Ainsworth, R.B. 2013. A hierarchical approach to architectural classification in marginal-marine systems: bridging the gap between sedimentology and sequence stratigraphy. AAPG Bulletin 97(7), 1121-1161, doi:10.1306/11011212024. DOI: https://doi.org/10.1306/11011212024

Wang, Z., Zhang, B., Gao, Z., Gao, J. 2023. Seismic swarm intelligence inversion with sparce probability distribution of reflectivity. Artificial Intelligence in Geosciences 4, 1-8, doi:10.1016/j.aiig.2023.02.001. DOI: https://doi.org/10.1016/j.aiig.2023.02.001

Weijermars, R., bin Waheed, U., Suleymanli., K. 2023. Will ChatGPT and related AI-tools alter the future of the geosciences and petroleum engineering? First Break 41, 53-61, doi:10.3997/1365-2397.fb2023043. DOI: https://doi.org/10.3997/1365-2397.fb2023043

Wood, D.A. 2022. Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated attributes in a gradational fluvial sequence. Artificial Intelligence in Geosciences 3, 132-147, doi:10.1016/j.aiig.2022.11.003. DOI: https://doi.org/10.1016/j.aiig.2022.11.003

Zhang, H., Chen, T., Liu, Y., Liu, J. 2021. Automatic seismic facies interpretation using supervised deep learning. Geophysics 86(1), doi:10.1190/geo2019-0425.1. DOI: https://doi.org/10.1190/geo2019-0425.1

Zhu, L., Zhou, X., Zhang, C. 2021. Rapid identification of high-quality marine shale gas reservoirs based on the oversampling method and random forest algorithm. Artificial Intelligence in Geosciences 2, 76-81, doi:10.1016/j.aiig.2021.12.001. DOI: https://doi.org/10.1016/j.aiig.2021.12.001

Zoo, J., Zwartjes, P. 2022. Attenuation of seismic migration smile artifacts with deep learning. Artificial Intelligence in Geosciences 3, 123-131, doi:10.1016/j.aiig.2022.11.002. DOI: https://doi.org/10.1016/j.aiig.2022.11.002

Downloads

Publicado

11-08-2023

Como Citar

Berton, F. (2023). Machine learning, inteligência artificial (IA), e a caracterização da subsuperfície: aplicações, possibilidades e riscos. Latin American Journal of Energy Research, 10(2), 131–139. https://doi.org/10.21712/lajer.2023.v10.n2.p131-139

Edição

Seção

Colunas