Machine learning, artificial intelligence (AI), and subsurface characterization: applications, possibilities and risks
DOI:
https://doi.org/10.21712/lajer.2023.v10.n2.p131-139Keywords:
Inteligência artificial, geologia do petróleo, análise de subsupérfícieAbstract
Software and plugins based on machine learning and artificial intelligence (AI) principles has been adapted to the processing and interpretation of subsurface data. In front of what might become a technological revolution, it is necessary to discuss the probable impacts of the new technologies. In subsurface studies in the oil and gas industry, AI has proven to be useful dealing with large volumes of geological data with homogeneous patterns, sparing the human user of repetitive tasks. This characteristic makes these software useful to increase efficiency and work safety, but the way they programmed now, they are far from being capable of dealing with the frequent geological complexity that might represent risks or opportunities in subsurface. Not even the best AI-based software are able to resolve the limitations that are inherent to subsurface data, such as lack of resolution, or lack of representativity. They also cannot generate plausible solutions to complex and specific geological conditions. The new AI-based technological solutions must be seen as tools to facilitate the work life of subsurface professionals. As any other tool, their existence have specific purposes that do not encompass the whole complexity of geological systems. The geological interpretation derived from machine learning and AI-based programs must be evaluated as geostatistical approximations, not as the representation of reality. Geoscientists will remain being necessary to apply AI-based tools correctly, and to filter the information provided by them.
Downloads
References
Arnø, M.L., Godhavn, J.-M., Aamo, O.M. 2022. Classification of Drilled Lithology in Real-Time Using Deep Learning with Online Calibration. SPE Drilling & Completion 37(1), 26-37, No SPE-204093-PA, doi:10.2118/204093-PA DOI: https://doi.org/10.2118/204093-PA
Baraboshkin, E.E., Panchenko, E.A., Demidov, A.E., Sharipova, Y.D., Gatina, N.N., Koroteev, D.A., 2022. Automated core description system application for sedimentological analysis. 21st International Sedimentological Congress, ID: T11-21082.
Berget, E.F. 2020. Redevelopment projects on the NCS: a statistical analysis of the Norwegian petroleum industry’s ability to generate unbiased production forecasts. Master’s Thesis, University of Stavanger.
Berton, F., Guedes, C.C.F., Vesely, F.F., Souza, M.C., Angulo, R.J., Rosa, M.L.C.C., Barboza, E.G. 2019. Quaternary coastal plains as reservoir analogs: wave-dominated sand-body heterogeneity from outcrop and ground-penetrating radar, central Santos Basin, Southeast Brazil. Sedimentary Geology 379, 97-113, doi:10.1016/j.sedgeo.2018.11.008. DOI: https://doi.org/10.1016/j.sedgeo.2018.11.008
Berton, F., Vesely, F.F. 2016. Stratigraphic evolution of Eocene clinoforms from northern Santos Basin, offshore Brazil: evaluating controlling factors on shelf-margin growth and deep-water sedimentation. Marine and Petroleum Geology 76, 356-372, doi:10.1016/j.marpetgeo.2016.09.007. DOI: https://doi.org/10.1016/j.marpetgeo.2016.09.007
Chen, L., Wang, L., Miao, J., Gao, H., Zhang, Y., Yao, Y., Bai, M., Mei, L., He, J. 2020. Review of the Application of Big Data and Artificial Intelligence in Geology. Journal of Physics: Conference Series 1684, No 012007, doi:10.1088/1742-6596/1684/1/012007. DOI: https://doi.org/10.1088/1742-6596/1684/1/012007
Cuddy, S. 2021. The benefits and dangers of using artificial intelligence in petrophysics. Artificial Intelligence in Geosciences 2, 1-10, doi:10.1016/j.aiig.2021.04.001. DOI: https://doi.org/10.1016/j.aiig.2021.04.001
dGB Earth Sciences. 2023. OpendTect. https://www.dgbes.com/software/opendtect (accessed in 16 July 2023).
Dolfsma, W. 2022. Different types of technological revolution. Opinion 10(4), No 1000200. doi: 10.35248/2311-3278.22.10.200
Fei, Y., Cai, H., Yang, J., Liang, J., Hu, G. 2023. Unsupervised pre-stack seismic facies analysis constrained by spatial continuity. Artificial Intelligence in Geosciences 4, 22-27, doi: 10.1016/j.aiig.2023.01.003. DOI: https://doi.org/10.1016/j.aiig.2023.01.003
Goldspot. 2022. MacDonald mines successfully intersects high-grade mineralization on the Earthlabs’s Alwyn Trend Target, SPJ property. https://www.goldspot.ca/news/macdonald-mines-successfully-intersects-high-grade-mineralization-on-the-earthlabss-alwyn-trend-target-spj-property/ (accessed 15 July 2023).
Howell, J.A., Martinius, A.W., Good, T.R. 2014. The application of outcrop analogues in geological modelling: a review, present status and future outlook. Geological Society, London, Special Publications 387, 1-25, doi:10.1144/SP387.12. DOI: https://doi.org/10.1144/SP387.12
Infante-Paez, L., Marfurt, K.J., Wallet, B. 2018. Igneous bodies that look like sedimentary features in seismic data: a way to avoid pitfalls in seismic interpretation. SEG International Exposition and 88th annual meeting, 1613-1617, doi:10.1190/segam2018-2998555.1. DOI: https://doi.org/10.1190/segam2018-2998555.1
Kim, J. 2022. Synthetic shear sonic log generation utilizing hybrid machine learning techniques. Artificial Intelligence in Geosciences 3, 53-70, doi:10.1016/j.aiig.2022.09.001. DOI: https://doi.org/10.1016/j.aiig.2022.09.001
Milkov, A.V., Navidi, W.C. 2020. Randomness, serendipity, and luck in petroleum exploration. AAPG Bulletin 104, 145-176, doi:10.1306/05061918128. DOI: https://doi.org/10.1306/05061918128
Msika, C., Findlay, R. 2023. Using a self-growing neural network approach to CCS monitoring. First Break 41, 63-67, doi:10.3997/1365-2397.fb2023044. DOI: https://doi.org/10.3997/1365-2397.fb2023044
Pandey, R.K., Aggarwal, S., Nath, G., Kumar, A., Vaferi, B. 2022. Metaheuristic algorithm integrated neural networks for well-test analyses of petroleum reservoir. Scientific Reports 12, No 16551, doi:10.1038/s41598-022-21075-w. DOI: https://doi.org/10.1038/s41598-022-21075-w
Perez, C. 2002. Technological revolutions and financial capital – the dynamics of bubbles and golden ages. Cheltenham: Edward Elgar Publishing Limited, ISBN: 978 1 84064 922 2. DOI: https://doi.org/10.4337/9781781005323
Rønevik, H.C., Jørstad, A., Lie, J.E. 2017. The discovery process behind the giant Johan Sverdrup Field. AAPG Memoir 113: Giant Fields of the decade 2000-2010, 195-220, doi:10.1306/13572008M1133687. DOI: https://doi.org/10.1306/13572008M1133687
Simons, M., Davies, A., Cowliff, L. 2023. Plausible characterization of subsurface geology is essential for the energy transition. First Break 41, 69-74, doi:10.3997/1365-2397.fb2023045. DOI: https://doi.org/10.3997/1365-2397.fb2023045
SLB. 2023. Automated lithology. https://www.slb.com/products-and-services/innovating-in-oil-and-gas/drilling/surface-and-downhole-logging/logging-while-drilling-services/automated-lithology (accessed in 15 June 2023).
Swiegers, H., Macfarlane, R. 2022. The autonomous and digital future of offshore environments: Fugro. Oil & Gas Middle East, https://www.oilandgasmiddleeast.com/products-services/offshore-environment (accessed in 15 June 2023).
Vakarelov, B.K., Ainsworth, R.B. 2013. A hierarchical approach to architectural classification in marginal-marine systems: bridging the gap between sedimentology and sequence stratigraphy. AAPG Bulletin 97(7), 1121-1161, doi:10.1306/11011212024. DOI: https://doi.org/10.1306/11011212024
Wang, Z., Zhang, B., Gao, Z., Gao, J. 2023. Seismic swarm intelligence inversion with sparce probability distribution of reflectivity. Artificial Intelligence in Geosciences 4, 1-8, doi:10.1016/j.aiig.2023.02.001. DOI: https://doi.org/10.1016/j.aiig.2023.02.001
Weijermars, R., bin Waheed, U., Suleymanli., K. 2023. Will ChatGPT and related AI-tools alter the future of the geosciences and petroleum engineering? First Break 41, 53-61, doi:10.3997/1365-2397.fb2023043. DOI: https://doi.org/10.3997/1365-2397.fb2023043
Wood, D.A. 2022. Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated attributes in a gradational fluvial sequence. Artificial Intelligence in Geosciences 3, 132-147, doi:10.1016/j.aiig.2022.11.003. DOI: https://doi.org/10.1016/j.aiig.2022.11.003
Zhang, H., Chen, T., Liu, Y., Liu, J. 2021. Automatic seismic facies interpretation using supervised deep learning. Geophysics 86(1), doi:10.1190/geo2019-0425.1. DOI: https://doi.org/10.1190/geo2019-0425.1
Zhu, L., Zhou, X., Zhang, C. 2021. Rapid identification of high-quality marine shale gas reservoirs based on the oversampling method and random forest algorithm. Artificial Intelligence in Geosciences 2, 76-81, doi:10.1016/j.aiig.2021.12.001. DOI: https://doi.org/10.1016/j.aiig.2021.12.001
Zoo, J., Zwartjes, P. 2022. Attenuation of seismic migration smile artifacts with deep learning. Artificial Intelligence in Geosciences 3, 123-131, doi:10.1016/j.aiig.2022.11.002. DOI: https://doi.org/10.1016/j.aiig.2022.11.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Latin American Journal of Energy Research
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.