Viscosity reduction of water-in-oil emulsion by phase inversion: surfactants performance and characterization

Autores

DOI:

https://doi.org/10.21712/lajer.2024.v11.n2.p10-22

Palavras-chave:

óleo crú, reologia, transição de fase, estabilidade cinética, Triton-X-100, Tween 80

Resumo

A técnica de inversão de fase tem recebido atenção na indústria do petróleo com o objetivo de diminuir o consumo de energia. Emulsões de petróleo bruto preparadas com soluções modelo de salmoura contendo 1,5% em peso de NaCl e 1,0% em peso de surfactantes foram produzidas e avaliadas quanto à condutividade elétrica, estabilidade cinética, microestrutura e reologia. Verificou-se que a inversão de fase ocorreu na faixa de 20-40% em peso de salmoura. Emulsões com 10-40% em peso de salmoura e Triton-X-100 manifestaram menor separação de fases do que sem surfactante ou com Tween 80, enquanto emulsões óleo em água com 50 e 60% em peso de salmoura e Triton-X-100 alcançou o menor valor de viscosidade. Assim, estes resultados elucidam a influência de parâmetros selecionados nas propriedades das emulsões visando melhorar a mobilidade e fluidez por inversão de fase de emulsões água em óleo de alta viscosidade.

Downloads

Biografia do Autor

Yuri Nascimento Nariyoshi, Universidade Federal do Espírito Santo

Bacharel e Doutor em Engenharia Química (respectivamente pela UFES, Brasil, 2011, e USP, Brasil, 2016). Professor Adjunto do Departamento de Engenharia e Tecnologia da UFES desde 2016. Tem experiência na área de termodinâmica de processos de separação, especialmente em cristalização e destilação por membranas. Atualmente é vice-chefe do Departamento de Engenharia e Tecnologia da UFES.

Rejane de Castro Santana, Universidade Federal de Viçosa

Possui graduação (2007) em engenharia de alimentos pela Universidade Federal de Viçosa, mestrado (2009) e doutorado (2014) em Engenharia de Alimentos pela Universidade Estadual de Campinas. Atualmente é Professora da Universidade Federal de Viçosa (UFV), Departamento de Química (DEQ), Curso Engenharia Química. É Professora colaboradora do Programa de Pós-Graduação em Engenharia Química (PPGENQ-UFV) e Professora orientadora e menbro da comissão coordenadora do Programa de Mestrado Profissional em Química em Rede Nacional (PROFQUI) - Polo UFV. Tem experiência na área de Engenharia de Alimentos, Engenharia Química e Engenharia de Petróleo, atuando principalmente nos seguintes temas: emulsões, cristais líquidos, biopolímeros e surfactantes, óleo de microalga, microestrutura e reologia.

Referências

Abd, R. M.; A. H. Nour, A. Z. Sulamain. (2014) ‘Kinetic stability and rheology of water-in-crude oil emulsion stabilized by cocamide at different water volume fractions’. International Journal of Chemical Engineering and Applications, p. 204-209. DOI: 10.7763/IJCEA.2014.V5.379

Abdurahman, N. H., Rosli Y. M., N. H. Azhari, B. A. Hayder (2012). ‘Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions’. J. Pet. Sci. Eng., 90-91, p.139-144. https://doi.org/10.1016/j.petrol.2012.04.025

Abdulredha, M.M., Hussain, S.A., Abullah, L.C. (2018). ‘Overview on petroleum emulsions, formation, influence and demulsification treatment techniques’. Arabian Journal of Chemistry, 13, p.3403-3428. http://doi.org/10.1016/j.arabjc.2018.11.014

Ahmed, N. S., A. M. Nassar, N. N. Zaki, H. Kh.Gharieb. (1999). ‘Formation of fluid heavy oil-in-water emulsions for pipeline transportation’. Fuel, 78, p. 593-600. https://doi.org/10.1016/S0016-2361(98)00157-4.

Al-Sabagh A. M. (2002). ‘The relevance HLB of surfactants on the stability of asphalt emulsion’. Colloids Surf., A, 204, 1–3, p. 73-83. https://doi.org/10.1016/S0927-7757(01)01115-3.

Al-Wahaibi, T., Al-Wahaibi, Y., Al-Hashmi, A.A.R., Mjalli, F.S., Al-Hatmi, S., (2015). ‘Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil-water emulsion’. Petroleum Science, p. 170-176. https://doi.org/10.1007/s12182-014-0009-2.

Ariffin, T. S. T., E. Yahya, H. Husin. (2016). ‘The rheology of light crude oil and water-in-oil emulsion’. Procedia Engineering, 148, p. 1149-1155. https://doi.org/10.1016/j.proeng.2016.06.614.

Becher, P., (1966). Emulsions: theory and practice. Reinhold, New York. p. 95-267.

Bulgarelli N.A.V., Biazussi J.L., Verde W.M., Perles C.E., de Castro M.S., Bennwart A.C. (2022). ‘Experimental investigation of the Electrical Submersible Pump’s energy consumption under unstable and stable oil/water emulsions: A catastrophic phase inversion analysis’. J. Pet. Sci. Eng., 216, p. 1-12. https://doi.org/10.1016/j.petrol.2022.110814

Chen Q., Liu Y., Hou J., Li X., Wei. B., Du Q. (2023). ‘Phase transition characteristics of heavy oil-viscosity reducer-water emulsion systems’. J. Mol. Liq., 379, p. 1-8. https://doi.org/10.1016/j.molliq.2023.121638

Da Silva M., Sad C.M.S., Pereira L. B., Corona R.R.B., Bassane J. F.P., Dos Santos F., C. Neto D., Silva S. R.C., Castro E. V. R., Filgueiras P. R. (2018). ‘Study of the stability and homogeneity of water in oil emulsions of heavy oil’. Fuel, 226, p. 278-285. https://doi.org/10.1016/j.fuel.2018.04.011

Deoclecio, L.H.P., D.C Ribeiro, A.P. Meneguelo. (2019). ‘CFD modeling of the creaming zone of batch gravity separation with coalescence’. J. Dispersion Sci. Technol., 41, p. 674-689. https://doi.org/10.1080/01932691.2019.1611436

Dorval Neto, M. C., C. M. S. Sad, M. Silva, F. D. Santos, L. B. Pereira, R. R.B. Corona, Silva, S. R. C., J. F. P. Bassane, E. V. R. Castro, P. R. Filgueiras, W. Romão, V. Lacerda Jr. (2019). ‘Rheological study of the behavior of water-in-oil emulsions of heavy oils’. J. Pet. Sci. Eng., 173, p. 1323-1331. https://doi.org/10.1016/j.petrol.2018.10.016.

Ebnesajjad, S. (2014). Surface Treatment of Materials for Adhesive Bonding. Second Ed., William Andrew Publishing. https://doi.org/10.1016/B978-0-323-26435-8.00013-7.

Faizullayev S., Adilbekova A., Kujawski W., Mirzaeian M. (2022). ‘Decent demulsification methods of crude oil emlsions – brief review’. J. Pet. Sci. Eng.. 215, 1-11. https://doi.org/10.1016/j.petrol.2022.110643

Fonseca, M. B., M.L. Pereira, M. R. Justiniano, R. de C. Santana. (2016). ‘Geração de emulsões de petróleo A/O e O/A sem adição de surfactante’. Latin American Journal of Energy Research, 3, p. 10-16. http://dx.doi.org/10.21712/lajer.2016.v3.n1.p10-16.

Foudazi, R., S. Qavi, I. Masalova, A. Y. Malkin. (2015). ‘Physical chemistry of highly concentrated emulsions’. Adv. Colloid Interface Sci., 220, p. 78-91. https://doi.org/10.1016/j.cis.2015.03.002.

Fortuny M., Oliveira C. B. Z., Melo R. L. F. V., Nele M., Coutinho R. C. C., Santos A. F. (2007). ‘Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions.’ Energy & Fuel, 21, p. 1358-1364. DOI: 10.1021/ef0603885.

Gillies R. G., Sun, R., Shook, C. A. (2000). ‘Laboratory investigation of inversion of heavy oil emulsions’. The Canadian Journal of Chemical Engineering, 78, p. 757-763. https://doi.org/10.1002/cjce.5450780419

Guo, J., Y. Yang, D. Zhang, W. Wu, Z. Yang, L. He. (2018). ‘A general model for predicting apparent viscosity of crude oil or emulsion in laminar pipeline at high pressures’. J. Pet. Sci. Eng., 160, p. 12-23. https://doi.org/10.1016/j.petrol.2017.10.034.

Hasan, S. W., M.T. Ghannam, N. Esmail. (2010). ‘Heavy crude oil viscosity reduction and rheology for pipeline transportation’. Fuel, 89, p.1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021

He, M., Pu, W., Yang, X., Liu, R. (2023). ‘Predicting the emulsion phase inversion point during self-emulsification using an improved free energy model and determining the model applicability’. Journal of Molecular Liquids, 329, https://doi.org/10.1016/j.molliq.2022.120869.

Honse, S. O, K. Khalil, R. M. Charin, F. W. Tavares, J. C. Pinto, M. Nele. (2018). ‘Emulsion phase inversion of model and crude oil systems detected by near-infrared spectroscopy and principal component analysis.’ Colloids and Surfaces A, 538, p. 565-573. https://doi.org/10.1016/j.colsurfa.2017.11.028

Jiang, J. Wang. Z., Wang, C., Shi, L., Hou, J., Zhang, L. (2022). ‘Model emulsions stabilized with nonionic surfactants: structure and rheology across catastrophic phase inversion’. ACS Omega, 7, p.44012-22020. https://doi.org/10.1021/acsomega.2c05388

Kokal, S. (2005). ‘Crud Crude Oil Emulsion: A State-Of-Art Review’, Society of petroleum engineers.

Kumar, S., V. Mahto. (2016). ‘Emulsification of Indian heavy crude oil in water for its efficient transportation through offshore pipelines.’ Chem. Eng. Res. Des., 115, p. 34-43. https://doi.org/10.1016/j.cherd.2016.09.017.

Kumar, A., Li, S., Cheng, C., Lee, D. (2015). ‘Recent developments in phase inversion emulsification’. Ind. Eng. Chem. Res., 54, p. 8375-8396. https://doi.org/10.1021/acs.iecr.5b01122.

Maffi, J.M., Estenoz, D.A. (2021). ‘Predicting phase inversion in agitated dispersions with machine learning algorithms’. Chem. Eng. Commun., 208, p. 1757-1774. https://doi.org/10.1080/00986445.2020.1815715.

Martínez-Palou R., Reyes J., Cerón-Camacho R., Ramírez-de-Santiago M., Villanueva D., Vallejo A.A., Aburto J. (2015). ‘Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsion - A proposed strategy for transporting extra heavy crude oils’, Chemical Engineering and Processing: Process Intensification, 98, p. 112-122. http://dx.doi.org/10.1016/j.cep.2015.09.014.

Medina-Sandoval, C. F., J. A. Valencia-Dávila, M. Y. Combariza, C. Blanco-Tirado. (2018). ‘Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane’. Fuel, 231, p. 297-306.

Meriem-Benziane, M., S. Abdul-Wahab, M. Benaicha, M. Belhadri. (2012). ‘Investigating the rheological properties of light crude oil and the characteristics of its emulsions in order to improve pipeline flow.’ Fuel, 95, p.97-107. https://doi.org/10.1016/j.fuel.2011.10.007.

Mironova, M. V., S. O. Ilyin. (2018). ‘Effect of silica and clay minerals on rheology of heavy crude oil emulsions.’ Fuel, 232, p.290-298. https://doi.org/10.1016/j.fuel.2018.05.164.

Moran, K. (2007). ‘Roles of interfacial properties on the stability of emulsified bitumen droplets.’ Langmuir, 23, p.4167-4177. https://doi.org/10.1021/la063290r

Nadirah L., H.N. Abdurahman, D. Rizauddin. (2014). ‘Rheological study of petroleum fluid and oil-in-water emulsion.’ International Journal of Engineering Sciences & Research Technology, 3, p.129-134.

Pu W., He M., Yang X., Liu R., Shen C. (2022). ‘Experimental study on the key influencing factors of phase inversion and stability of heavy oil emulsion: Asphaltene, resin and petroleum acid’. Fuel, 311, p.1-13. https://doi.org/10.1016/j.fuel.2021.122631

Pu, W., He, M, Yang, X. (2021). ‘A new method to judge the phase inversion point of crude emulsion.’ J. Dispersion Sci. Technol., 43, p.1453-1461. https://doi.org/10.1080/01932691.2020.1869034

Martínez-Palou, R., J. Reyes, R. Cerón-Camacho, M. Ramírez-de-Santiago, D. Villanueva, A. A. Vallejo, J. Aburto. (2015). ‘Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions – A proposed strategy for transporting extra heavy crude oils.’ Chemical Engineering and Processing: Process Intensification, 98, p. 112-122. https://doi.org/10.1016/j.cep.2015.09.014.

Muñoz A.V, Sølling T.I. (2017). ‘Imaging emulsions: the effect of salinity on North Sea Oils’. J. Pet. Sci. Eng., 159, 483-487.

Schramm, L.L., E. N. Stasiuk, D. G. Marangoni. (2003). ‘2 Surfactants and Their applications.’ Annual Reports Section “C” (Physical Chemistry), 99, pp. 3–48. https://doi.org/10.1039/B208499F

Shi S., Y. Wang, Y. Liu, L. Wang. (2018). ‘A new method for calculating the viscosity of W/O and O/W emulsion.’ J. Pet. Sci. Eng, 171, p. 928-937. https://doi.org/10.1016/j.petrol.2018.08.015.

Silva, M. da., C.M.S. Sad, L.B. Pereira, R.R.B. Corona, J.F.P. Bassane, F.D. dos Santos, D.M.C. Neto, S.R.C. Silva, E.V.R., P.R. Filgueiras. (2018). ‘Study of the stability and homogeneity of water in oil emulsions of heavy oil.’ Fuel, 226, p. 278-285. https://doi.org/10.1016/j.fuel.2018.04.011.

Souas F., Safri A., Benmounah A. (2021). ‘A review on the rheology of heavy crude oil for pipeline transportation.’ Petroleum Research, 6, p. 116-136. https://doi.org/10.1016/.

Sun R., Shook, C.A. (1996). ‘Inversion of heavy crude oil-in-brine emulsions.’ J. Pet. Sci. Eng., 14, p. 169-182.

Tan J., Luo P., Vahaji S., Jing J., Hu H., Yu B., Tu J. (2020). ‘Experimental investigation on phase inversion point and flow characteristics of heavy crude oil-water flow.’ Appl. Therm. Eng., 180, https://doi.org/10.1016/.

Umar, A. A., I. B. M. Saaid, R. B. M. Pilus. (2018). ‘A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactant and solids.’ J. Pet. Sci. Eng., 165, 673-690. https://doi.org/10.1016/j.petrol.2018.03.014

Vegad, G. D., Jana, A. K. (2021). ‘Viscosity reduction of Indian heavy crude oil by emulsification to O/W emulsion using polysorbate-81.’ J. Surfactants Deterg., 24. https://doi.org/10.1002/jsde.12470

Walstra, P. (1993). ‘Principles of emulsion formation.’ Chem.Eng.Sci., 48, 333-349. https://doi.org/10.1016/0009-2509(93)80021-H

Zadymova N.M., Z.N. Skvortsova, V.Y. Traskine, F.A. Kulikov-Kostyushko, V.G. Kulichikhim, A.Y. Malkin. (2017). ‘Rheological properties of heavy oil emulsions with different morphologies.’ J.Pet.Sci.Eng., 149, 522-530. https://doi.org/10.1016/j.petrol.2016.10.050

Zi, J.J., Wang, Z., Wang, C., Shi, L., Hou, J., Zhang, L. (2022). ‘Model emulsions stabilized with nonionic surfactants: structure and rheology across catastrophic phase inversion.’ ACS Omega, 7, 44012-44020. https://doi.org/10.1021/acsomega.2c05388

Zolfaghari, R., A. Fakhru’l-Razi, L.C. Abdullah, S. S.E.H. Elnashaie, A. Pendashteh. (2016). ‘Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry.’ Sep. Purif. Technol., 170, 377-407. https://doi.org/10.1016/j.seppur.2016.06.026

Downloads

Publicado

26-12-2024

Como Citar

Nascimento Nariyoshi, Y., Meneguelo, A. P., & de Castro Santana, R. (2024). Viscosity reduction of water-in-oil emulsion by phase inversion: surfactants performance and characterization. Latin American Journal of Energy Research, 11(2), 10–22. https://doi.org/10.21712/lajer.2024.v11.n2.p10-22

Edição

Seção

Petróleo e Gás Natural