Approximate calculation model and Gibbs model to determine operating parameters of the sucker-rod pumping system

Authors

  • Camylla Moreira de Oliveira Halliburton
  • Oldrich Joel Romero Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.21712/lajer.2021.v8.n1.p67-85

Keywords:

artificial lift, rod string, dynamometer pump card, intake pressure, TWM

Abstract

Sucker- rod pump is the artificial lift method most used in the world and the determination of its operating parameters is extremely important to optimize its performance. Tracking the maximum and minimum rod stress can ensure longer life for the rods and for the entire sucker-rod pumping system (Pons, 2014). The key to the proper description of the pumping system is the appropriate simulation of the rod string’s behavior. This paper utilizes the approximate calculation model, and the Gibbs model to calculate the operating parameters PPRL – Peak Polished Rod Load, MPRL – Minimum Polished Rod Load and PT – Peak Torque of the sucker rod pumping system. The simulation of the Gibbs model were performed using the software SROD® and the data for this paper were obtained from the Petrobras database taken from the TWM® (Total Well Management) software. The results of the simulation are compared with two different pump intake pressures provided by the TWM® software, the pump intake pressure determined from acoustic fluid-level surveys and the pump intake pressure determined from dynamometer pump cards. The results present that for the approximate calculation model, the pump intake pressure from acoustic fluid levels is the most adequate to be used, and for Gibbs model via SROD®, the most suitable pump intake pressure is the one obtained from the analysis of the dynamometer pump cards.

Downloads

Download data is not yet available.

Author Biography

Camylla Moreira de Oliveira, Halliburton

Stimulation and Sand Control Engineer

References

Almeida, P (2012) Previsão do comportamento de sistemas de bombeio mecânico. Projeto de Graduação, Universidade Federal do Espírito Santo, São Mateus, ES, Brasil.

Almeida, P e Romero, OJ (2013) ‘Simulação numérica da deformação da coluna de hastes de um sistema de bombeio mecânico’, Petro & Química, v. 353, pp. 32-37.

API (1988) Recommended practice for design calculations for sucker rod pumping systems, 4th ed. American Petroleum Institute - API RP 11L.

Barros Filho, J (2002) Ajuste Automático e Otimização do Tempo de Espera (Idle Time) em Bombeio Mecânico de Petróleo. Dissertação de Mestrado, UFRN, Natal, Brasil.

Corrêa, JF (1995) Sistema Inteligente para Aplicações de Soluções ao Bombeamento Mecânico de petróleo. Dissertação de Mestrado – Unicamp, Campinas, Brasil.

Costa, RO (1995) Bombeio Mecânico Alternativo em Poços Direcionais. Dissertação de Mestrado, UNICAMP, Campinas.

Echometer Co (1998) Software TWM. Wichita Falls, TX, Estados Unidos. <http://www.echometer.com>.

Gibbs, SG (1963) ‘Predicting the behavior of sucker rod pumping systems’, Paper Number: SPE-588-PA, Journal of Petroleum Technology, v. 15, n. 7, pp. 769–778. < https://doi.org/10.2118/588-PA>.

Gibbs, SG (1977) ‘A General Method for Predicting Rod Pumping System Performance’, SPE Annual Fall Technical Conference and Exhibition, SPE 6850, Denver.

Lea, JF (1990) ‘Modeling Forces on a Beam Pump System During Pumping Highly Viscous Crude’, SPE Prod Eng, v. 6, n. 4, pp. 420–426. <https://doi.org/10.2118/20672-PA>.

Lea, JF, Pattillo, PD, Studenmud, WR (1995) ‘Interpretation of Calculated Forces on Sucker Rods’, SPE Production & Facilities, v. 10, n. 1, pp. 41-45. <https://doi.org/10.2118/25416-PA>.

Mills, KN (1939) Factors Influencing Well Loads Combined in a New Formula. Petroleum Engineering (April).

Nascimento, JMA (2005) Simulador Computacional para Poços de Petróleo com Método de Elevação Artificial por Bombeio Mecânico. Dissertação de Mestrado – UFRN, Natal.

Nico Filho, GH, Silva, GHD, Segantine, EJ, Ribeiro, DC e Romero, OJ (2019) ‘A New Methodology to Analyze Fluid Pound in Sucker-Rod Pump Systems: Phenomenological Approach’, International Journal of Advanced Engineering Research and Science, v. 6, pp. 738-747. <https://doi.org/10.22161/ijaers.6.6.86>

Pons, V (2014) ‘Optimal Stress Calculations for Sucker Rod Pumping Systems’, SPE Artificial Lift Conference & Exhibition-North America, Houston, Texas, USA, 6–8 October.

Quintaes, F, Ortiz, A, Maitelli, A, Fontes, F, Karbage, E e Costa, R (2009) ‘Automação dos Procedimentos de Mudança de Curso e Balanceamento em Unidades de Bombeio Mecânico’, 5° Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás, Fortaleza, CE.

Romero, OJ e Almeida, P (2014) ‘Numerical simulation of the sucker-rod pumping system’, Ingenieria e Investigación, v. 34, n. 3, pp. 4-11. <http://doi.org/10.15446/ing.investig.v34n3.40835>.

Rowlan, OL, McCoy, JN and Podio, AL (2011) ‘Pump intake pressure determined from fluid levels, dynamometers, and valve-test measurements’, Journal of Canadian Petroleum Technology, v. 50, n. 4, pp. 59–66. <https://doi.org/10.2118/142862-PA>.

Schnitman, L, Albuquerque, GS, Corrêa, JF, Lepikson, H and Bitencourt, ACP (2003) ‘Modeling and implementation of a system for sucker rod downhole dynamometer card pattern recognition’, SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA.

Takács, JW (2003) Sucker-rod Pumping Manual. PennWellBooks.

Thomas, JE (2004) Fundamentos de Engenharia de Petróleo, 2ª Ed. Rio de Janeiro: Editora Interciência.

Waggoner, JR and Mansure, AJ (2000) ‘Development of the Downhole Dynamometer Database’, SPE Prod & Fac, v. 15, n. 1, pp. 3–5. < https://doi.org/10.2118/60768-PA>.

Xu, J, Nolen, K, Shipp, D, Cordova, A and Gibbs, S (2010) Rod Pumping Deviated Wells. Lufkin Automation. <http://alrdc.org/workshops/2005_Fall2005BeamPump/presentations/Paper%20-%20Lufkin%20---%20Rod%20Pumping%20Deviated%20Wells.pdf>.

Published

11-07-2021

How to Cite

Moreira de Oliveira, C., & Romero, O. J. (2021). Approximate calculation model and Gibbs model to determine operating parameters of the sucker-rod pumping system. Latin American Journal of Energy Research, 8(1), 67–85. https://doi.org/10.21712/lajer.2021.v8.n1.p67-85

Issue

Section

Petróleo e Gás Natural

Most read articles by the same author(s)

> >>