Emisiones teóricas de biogás de vertedero y su uso energético en Brasil: un estudio bibliométrico

Autores/as

  • Julio Pansiere Zavarise UFES
  • Yasmim Sagrillo Pimassoni
  • Laura Marina Pinotti Ufes
  • Ediu Carlos Lopes Lemos Ifes

DOI:

https://doi.org/10.21712/lajer.2021.v8.n1.p96-108

Palabras clave:

metano, generación distribuida, electricidad, residuo sólido, residuos urbanos

Resumen

La disposición incorrecta de los residuos sólidos urbanos (RSU) provoca la emisión de gases de efecto invernadero (GEI), como el metano (CH4). Los vertederos son el principal destino de los RSU en Brasil y generan biogás de vertedero, que puede utilizarse con fines energéticos. Para que los rellenos sanitarios puedan diseñar sistemas de aprovechamiento y recuperación de energía de biogás, es necesario estimar el volumen de gas que se emitirá durante la vida útil del relleno. Para ello, es posible hacer uso de modelos matemáticos, como LandGEM y el modelo desarrollado por el Panel Intergubernamental de Cambio Climático (IPCC). Considerando el crecimiento de publicaciones sobre la valorización energética del biogás de relleno sanitario, este estudio tuvo como objetivo identificar las tendencias y vacíos de investigación sobre los estudios de emisiones teóricas de CH4 en rellenos sanitarios brasileños y su posterior uso energético, a través de un análisis bibliométrico. Se observó una tendencia creciente en el número de publicaciones en el período de 2013 a 2020. India, China y Estados Unidos son los países que más artículos publicaron sobre el tema en el período de análisis. En cuanto a los modelos aplicados, hubo una fuerte preferencia por el modelo LandGEM y por proyectos de conversión de biogás en energía eléctrica. También cabe destacar el crecimiento de la generación distribuida de electricidad mediante biogás de vertedero. Como oportunidades de investigación, existe la posibilidad de utilizar el modelo del IPCC para generar estimaciones teóricas de las emisiones de GEI en los rellenos sanitarios de RSU brasileños y el uso de biometano para generar calor y reemplazar la demanda local de gas natural.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julio Pansiere Zavarise, UFES

Mestrando em Energia pela UFES. Bacharel em Engenharia Química pela UFES.

Citas

Abdelli, IS, Addou, FY, Dahmane, S, Abdelmalek, F e Addou, A (2020) ‘Assessment of methane emission and evaluation of energy potential from the municipal solid waste landfills’, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, [online], v. 42, pp. 1–20. <https://doi.org/10.1080/15567036.2020.1813221>.

Abrelpe (2020) Panorama de Resíduos Sólidos no Brasil. Brazilian Association of Public Cleaning and Special Waste - Abrelpe (em Português), São Paulo.

Aguilar-Virgen, Q, Taboada-González, P, Ojeda-Benítez, S e Cruz-Sotelo, S (2014) ‘Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters’, Renewable and Sustainable Energy Reviews, [online], v. 30, pp. 412–419. <https://doi.org/10.1016/j.rser.2013.10.014>.

Alfaia, RG de SM, Costa, AM e Campos, JC (2017) ‘Municipal solid waste in Brazil: A review’, Waste Management and Research, [online], v. 35, n. 12, pp. 1195–1209. <https://doi.org/10.1177/0734242X17735375>.

Amini, HR, Reinhart, DR e Mackie, KR (2012) ‘Determination of first-order landfill gas modeling parameters and uncertainties’, Waste Management, [online], v. 32, n. 2, pp. 305–316. <http://dx.doi.org/10.1016/j.wasman.2011.09.021>.

Andriani, D e Atmaja, TD (2019) ‘The potentials of landfill gas production: a review on municipal solid waste management in Indonesia’, Journal of Material Cycles and Waste Management, [online], v. 21, n. 6, pp. 1572-1586. <https://doi.org/10.1007/s10163-019-00895-5>.

ANEEL - Agência Nacional de Energia Elétrica (2012) Resolução Normativa Nº 482, De 17 De Abril De 2012 [pdf]. <http://www2.aneel.gov.br/cedoc/ren2012482.pdf> (Acesso em 23 maio 2021).

Bezerra, FEC, e de Alexandria, A (2020) ‘Biomethane Generation Produced in Municipal Landfill’, International Journal for Innovation Education and Research, [online], v. 8, n. 12, pp. 01–21. <https://doi.org/10.31686/ijier.vol8.iss12.2644>.

BRASIL (2010) ‘Lei n° 12.305 de agosto de 2010’. (Acessado 18 maio 2021).

Celeste, WC, Rocha, HR de O, Coura, DJC, Oliveira, FDC (2016) 'Produção e Transporte de Energia Elétrica’ in Chaves, G e Tosta, M (eds.), Gestão de Sistema de Energia. Curitiba, BR: CRV, pp. 69-92

Choudhary, A, Kumar, A e Kumar, S (2020) ‘National Municipal Solid Waste Energy and Global Warming Potential Inventory: India’, Journal of Hazardous, Toxic, and Radioactive Waste, [online], v. 24, n. 4, 06020002. <https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HZ.2153-5515.0000521>.

Da Silva, LJVB, Dos Santos, IFS, Mensah, JHR, Gonçalves, ATT e Barros, RM (2020a) ‘Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential’, Renewable Energy, [online], v. 149, pp. 1386–1394. <https://doi.org/10.1016/j.renene.2019.10.134>.

Da Silva, NF, Schoeler, GP, Lourenço, VA, De Souza, PL, Caballero, CB, Salamoni, RH e Romani, RF (2020b) ‘First order models to estimate methane generation in landfill: A case study in south Brazil’, Journal of Environmental Chemical Engineering, [online], v. 8, n. 4, pp. 104053. <https://doi.org/10.1016/j.jece.2020.104053>.

Dalmo, FC, Simão, NM, Lima, HQ de, Medina Jimenez, AC, Nebra, S, Martins, G, Palacios-Bereche, R e Henrique de Mello Sant’Ana, P (2019) ‘Energy recovery overview of municipal solid waste in São Paulo State, Brazil’, Journal of Cleaner Production, [online], v. 212, pp. 461–474. <https://doi.org/10.1016/j.jclepro.2018.12.016>.

Das, S, Lee, SH, Kumar, P, Kim, KH, Lee, SS e Bhattacharya, SS (2019) ‘Solid waste management: Scope and the challenge of sustainability’, Journal of Cleaner Production, [online], v. 228, pp. 658–678. <https://doi.org/10.1016/j.jclepro.2019.04.323>.

De Andrade, JVB, Rodrigues, B N, dos Santos, IFS, Haddad, J, e Filho, GLT (2020) ‘Constitutional aspects of distributed generation policies for promoting Brazilian economic development’, Energy Policy, [online], v. 143, pp. 111555. <https://doi.org/10.1016/j.enpol.2020.111555>

De Brito, RC, Barros, RM, dos Santos, IFS, Tiago Filho, GL e da Silva, SPG (2021) ‘Municipal solid waste management and economic feasibility for electricity generation from landfill gas and anaerobic reactors in a Brazilian state’, Environmental Technology & Innovation, [online], v. 22, pp. 101453. <https://doi.org/10.1016/j.eti.2021.101453>.

Dos Santos, RE, Dos Santos, IFS, Barros, RM, Bernal, AP, Tiago Filho, GL e Da Silva, FGB (2019) ‘Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis’, Journal of Environmental Management, [online], v. 231, pp. 198–206. <https://doi.org/10.1016/j.jenvman.2018.10.015>.

EPE- Empresa de Pesquisa Energética (2018) Nota Tecnica DEA 019/2018- Estudo sobre a Economicidade do Aproveitamento dos Resíduos Sólidos Urbanos em Aterro para Produção de Biometano [pdf]. (Acesso em 24 maio 2021).

Fallahizadeh, S, Rahmatinia, M, Mohammadi, Z, Vaezzadeh, M, Tajamiri, A e Soleimani, H (2019) ‘Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran’, MethodsX, [online], v. 6, pp. 391–398. <https://doi.org/10.1016/j.mex.2019.02.013>.

Fan, W e Hao, Y (2020) ‘An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China’, Renewable Energy, [online], v. 146, pp. 598–609. <https://doi.org/10.1016/j.renene.2019.06.170>.

Freitas, FF, De Souza, SS, Ferreira, LRA, Otto, RB, Alessio, FJ, De Souza, SNM, Venturini, OJ e Junior, OA (2019) ‘The Brazilian market of distributed biogas generation: Overview, technological development and case study’, Renewable and Sustainable Energy Reviews, [online], v. 101, pp. 146–157. <https://doi.org/10.1016/j.rser.2018.11.007>.

Gollapalli, M e Kota, SH (2018) ‘Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models’, Environmental Pollution, [online], v. 234, pp. 174–180. <https://doi.org/10.1016/j.envpol.2017.11.064>.

Guozhu, M, Huang, N, Chen, L e Wang, H (2018) ‘Research on biomass energy and environment from the past to the future: A bibliometric analysis’, Science of the Total Environment, [online], v. 635, pp. 1081–1090. <https://doi.org/10.1016/j.scitotenv.2018.04.173>.

Hoo, PY, Hashim, H e Ho, WS, (2018) ‘Opportunities and challenges: Landfill gas to biomethane injection into natural gas distribution grid through pipeline’, Journal of Cleaner Production, [online] 175, pp.409–419. <https://doi.org/10.1016/j.jclepro.2017.11.193>.

IEA (2020) Outlook for biogas and biomethane [online], IEA. <https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth>

Instituto Brasileiro de Geografia e Estatística (IBGE) (2020) Cidades [online]. <https://cidades.ibge.gov.br/> (Acesso em 24 maio 2021).

Intergovernmental Panel on Climate Change – IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IGES, Japão.

Kovalev, D, Kovalev, A, Grigoryev, V, Litty, Y e Egorov, M, (2021) ‘Biogas and Landfill Gas Converting To Gas Motor Fuel Through Clathrate Hydrate’, Procedia Environmental Science, Engineering and Management, [online], v. 8, n. 1, pp. 293–300. <http://procedia-esem.eu/pdf/issues/2021/no1/32_02.32.Litty_21.pdf>.

Kumar, R (2020) ‘India & South Asia: Geopolitics, regional trade and economic growth spillovers’, The Journal of International Trade & Economic Development, [online], v. 29, n. 1, pp. 69–88. <https://doi.org/10.1080/09638199.2019.1636121>.

Kumar, S, Smith, S., Fowler, G, Velis, C, Kumar, SJ, Arya, S, Rena, Kumar, R e Cheeseman, C (2017) ‘Challenges and opportunities associated with waste management in India’, Royal Society Open Science, [online], v. 4, n. 3. <https://doi.org/10.1098/rsos.160764>.

Lee, S, Kim, J e Chong, WKO (2016) ‘The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States’, Waste Management, [online], v. 56, pp. 593–599. <https://doi.org/10.1016/j.wasman.2016.07.022>.

Lima, PDM, Colvero, DA, Gomes, AP, Wenzel, H, Schalch, V e Cimpan, C, (2018a) Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil, Waste Management, [online], v. 78, pp. 857–870. <https://doi.org/10.1016/j.wasman.2018.07.007>.

Lima, RM, Santos, AHM, Pereira, CRS, Flauzino, BK, Pereira, ACOS, Nogueira, FJH e Valverde, JAR (2018b) Spatially distributed potential of landfill biogas production and electric power generation in Brazil, Waste Management, [online], v. 74, pp. 323–334. <https://doi.org/10.1016/j.wasman.2017.12.011>.

Lino, FAM e Ismail, KAR (2018) ‘Evaluation of the treatment of municipal solid waste as renewable energy resource in Campinas, Brazil’, Sustainable Energy Technologies and Assessments, [online], v. 29, pp. 19–25. <https://doi.org/10.1016/j.seta.2018.06.011>.

Lino, FAM e Ismail, KAR (2012) ‘Analysis of the potential of municipal solid waste in Brazil’, Environmental Development, [online], v. 4, n. 1, pp. 105–113. <http://dx.doi.org/10.1016/j.envdev.2012.08.005>.

Liu, Y, Xing, P e Liu, J, (2017) ‘Environmental performance evaluation of different municipal solid waste management scenarios in China’, Resources, Conservation and Recycling, [online], v. 125, pp. 98–106. <https://doi.org/10.1016/j.resconrec.2017.06.005>.

Lombardi, F, Costa, G e Sirini, P (2017) ‘Analysis of the role of the sanitary landfill in waste management strategies based upon a review of lab leaching tests and new tools to evaluate leachate production’, Revista Ambiente e Agua, v. 12, n. 4, pp. 543–555. <http://dx.doi.org/10.4136/ambi-agua.2096 >.

Manasaki, V, Palogos, I, Chourdakis, I, Tsafantakis, K e Gikas, P (2021) ‘Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation’, Chemosphere, [online], v. 269, pp. 128688. <https://doi.org/10.1016/j.chemosphere.2020.128688>.

Margon, R, Pinotti, L e Freitas, RR de (2018) ‘Enzymatic hydrolysis of eucalyptus biomass for bioethanol production: a bibliometric analysis’, Research, Society and Development, [online], v. 7, n. 4, e1474301. <https://doi.org/10.17648/rsd-v7i4.301>.

Markgraf, C e Kaza, S (2016) Financing Landfill Gas Projects in Developing Countries. Urban Development Series Knowledge Papers. World Bank.

MME - Ministério de Minas e Energia (2015) Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica (ProGD) [pdf]. <http://antigo.mme.gov.br/documents/20182/6dac9bf7-78c7-ff43-1f03-8a7322476a08> (Acesso em 23 maio 2021).

Moreto, ER, Porto, PS da S e Freitas, RR de (2020) ‘Análise bibliométrica de alternativas para remoção de nutrientes de águas residuais nas bases Scopus, Web of Science e Scielo’, Brazilian Journal of Production Engineering - BJPE, [online], v. 6, n. 7, pp. 133–149. <https://doi.org/10.47456/bjpe.v6i7.32903>.

Nandan, A, Yadav, BP, Baksi, S e Bose, D (2017) ‘Recent Scenario of Solid Waste Management in India’, World Scientific News, [online], v. 66, pp. 56–74. .

Narwane, VS, Yadav, VS, Raut, RD, Narkhede, BE e Gardas, BB (2021) ‘Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach’, Renewable Energy, [online], v. 164, pp. 298–309. <https://doi.org/10.1016/j.renene.2020.09.077>.

Neto, FADC (2017) ‘Rotas Prováveis de Utilização: Geração de Energia Elétrica ou Distribuição Canalizada’, apresentado no 9º Congresso Brasileiro De Pesquisa e Desenvolvimento em Petróleo e Gás, Maceió, AL, pp. 9-11, novembro. <http://repositorio.ufc.br/bitstream/riufc/54704/1/2017_eve_facastroneto.pdf>.

Paes, MX, Mancini, SD, De Medeiros, GA, Bortoleto, AP e Kulay, LA (2018) ‘Life cycle assessment as a diagnostic and planning tool for waste management-a case study in a Brazilian municipality’ Journal of Solid Waste Technology and Management, [online], v. 44, n. 3, pp. 259–269. <https://doi.org/10.5276/JSWTM.2018.259>.

Penteado, R, Cavalli, M, Magnano, E e Chiampo, F (2012) ‘Application of the IPCC model to a Brazilian landfill: First results’, Energy Policy, [online], v. 42, pp. 551–556. <https://doi.org/10.1016/j.enpol.2011.12.023>.

Pereira, TDS e Fernandino, G (2019) ‘Evaluation of solid waste management sustainability of a coastal municipality from northeastern Brazil’, Ocean and Coastal Management, [online], v. 179, pp. 104839. <https://doi.org/10.1016/j.ocecoaman.2019.104839>.

Piñas, JAV, Venturini, OJ, Lora, EES, de Oliveira, MA e Roalcaba, ODC (2016) ‘Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models’, Revista Brasileira de Estudos de População, [online], v. 33, n. 1, pp. 175-188. <https://doi.org/10.20947/S0102-309820160009>.

Pisani, R, Alves de Castro, MCA e da Costa, AA (2018) ‘Influence of population, income and electricity consumption on per capita municipal solid waste generation in São Paulo State, Brazil’, Journal of Material Cycles and Waste Management, [online], v. 20, n. 2, pp. 1216–1227. <https://doi.org/10.1007/s10163-017-0687-0>.

Qu, S, Guan, D, Ma, Z e Yi, X (2019) ‘A study on the optimal path of methane emissions reductions in a municipal solid waste landfill treatment based on the IPCC-SD model’, Journal of Cleaner Production, [online], v. 222, pp. 252–266. <https://doi.org/10.1016/j.jclepro.2019.03.059>.

Saghir, M, Naimi, Y e Tahiri, M (2018) ‘First-order mathematical modeling of biogas production: Application for the controlled landfill of fez’, In: 3rd Renewable Energies, Power Systems and Green Inclusive Economy, REPS and GIE, pp.1–6. IEEE. <https://doi.org/10.1109/REPSGIE.2018.8488783>

Sánchez, AD, Rama, M de la CDR e García, JÁ (2017) ‘Bibliometric analysis of publications on wine tourism in the databases Scopus and WoS’, European Research on Management and Business Economics, [online], v. 23, n. 1, pp. 8–15. <http://dx.doi.org/10.1016/j.iedeen.2016.02.001>.

Santos, MM, Romanel, C e Elk, AGHPV (2017) ‘Análise da eficiência de modelos de decaimento de primeira ordem na previsão da emissão de gás de efeito estufa em aterros sanitários brasileiros’, Engenharia Sanitaria e Ambiental, v. 22, n. 6, pp. 1151–1162. <https://doi.org/10.1590/s1413-41522017156311>.

Secchim, AB, Freitas, RR de e Gonçalves, W, 2018. ‘Mapeamento e análise bibliométrica da utilização da Análise Envoltória de Dados (Dea) em estudos de engenharia de produção’, Brazilian Journal of Production Engineering - BJPE, [online], v. 4, n. 1, pp. 116–128. <https://doi.org/10.0001/v4n1_8>.

SEEG (2020) ‘Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas Implicações para as Metas de Clima do Brasil 1970-2019’. Disponível em: <https://seeg-br.s3.amazonaws.com/Documentos Analiticos/SEEG_8/SEEG8_DOC_ANALITICO_SINTESE_1990-2019.pdf>. (Acesso em 20 maio 2021).

Sharma, BK e Chandel, MK (2021) ‘Life cycle cost analysis of municipal solid waste management scenarios for Mumbai, India’, Waste Management, [online], v. 124, pp. 293–302. <https://doi.org/10.1016/j.wasman.2021.02.002>.

Souza, ARD, Silva, ATYL, Trindade, AB, Freitas, FF e Anselmo, JA (2019) ‘Análise do potencial de aproveitamento energético de biogás de aterro e simulação de emissões de gases do efeito estufa em diferentes cenários de gestão de resíduos sólidos urbanos em Varginha (MG)’, Engenharia Sanitaria e Ambiental, [online], v. 24, n. 5, pp. 887-896. <https://doi.org/10.1590/s1413-41522019187066>

Suela, SC, Porto, PS da S e Freitas, RR de (2018) ‘Tratamento de águas residuais para produção de estruvita: um estudo bibliométrico’, Research, Society and Development, [online], v. 7, n. 9, e1179380-e1179380. <https://doi.org/10.17648/rsd-v7i9.380>.

The World Bank (2020) World Development Indicators: Population dynamics. Disponível em: <http://wdi.worldbank.org/table/2.1> (Acesso em 21 maio 2021).

United States Environmental Protection Agency – USEPA (2005) Landfill Gas Emissions Model (LandGEM) version 3.02 User’s Guide, EPA-600/R-05/47. USEPA, United States.

Xiao, S, Dong, H, Geng, Y, Fujii, M e Pan, H (2021) ‘Greenhouse gas emission mitigation potential from municipal solid waste treatment: A combined SD-LMDI model’, Waste Management, [online], v. 120, pp. 725–733. <https://doi.org/10.1016/j.wasman.2020.10.040>.

Yodi, Y, Suryawan, IWK e Afifah, AS (2020) ‘Estimation of Green House Gas (GHG) emission at Telaga Punggur landfill using triangular, LandGEM, and IPCC methods’, Journal of Physics: Conference Series, [online], v. 1456, p. 1. <https://doi.org/10.1088/1742-6596/1456/1/012001>.

Zavarise, JP e Pinotti, LM (2020) ‘Advances in biochemical characterization of microbial lipases: a review’, Research, Society and Development, [online], v. 9, n. 4, pp. 1-22. <https://doi.org/10.33448/rsd-v9i4.2897>

Zhao, R, Xi, B, Liu, Y, Su, J e Liu, S, (2017) ‘Economic potential of leachate evaporation by using landfill gas: A system dynamics approach’, Resources, Conservation and Recycling, [online], v. 124, pp. 74–84. <https://doi.org/10.1016/j.resconrec.2017.04.010>

Publicado

11-07-2021

Cómo citar

Zavarise, J. P., Sagrillo Pimassoni, Y., Pinotti, L. M., & Lopes Lemos, E. C. (2021). Emisiones teóricas de biogás de vertedero y su uso energético en Brasil: un estudio bibliométrico. Latin American Journal of Energy Research, 8(1), 96–108. https://doi.org/10.21712/lajer.2021.v8.n1.p96-108

Número

Sección

Revisão de Artigos