Proposta de plano de manutenção para um torno do laboratório de usinagem da Universidade de Brasília
DOI:
https://doi.org/10.47456/bjpe.v8i4.38701Palavras-chave:
Plano De Manutenção, Manutenção Preventiva, Ferramentas De Manutenção, Tornos MecânicosResumo
As universidades públicas contribuem com a maior parte das pesquisas desenvolvidas no Brasil, principalmente a partir de estudos baseados em equipamentos disponíveis nos laboratórios das respectivas universidades. Em muitos casos, esses equipamentos são mantidos operacionais durante longos períodos através de operações de manutenção adequadas. Com foco na área de usinagem, esse fato se torna ainda mais relevante, uma vez que os equipamentos possuem muito robustez e durabilidade. A partir de um levantamento bibliométrico foi possível constatar que quase 50% dos estudos desenvolvidos em torneamento no país utilizam equipamentos com mais de 20 anos. Assim, este estudo tem como objetivo elaborar um plano de manutenção para os tornos disponíveis no Laboratório de Usinagem da Universidade de Brasília. Para isto, inicialmente identificou-se o tipo mais adequado de manutenção, seguido da determinação dos componentes de verificação. Após essa etapa foram selecionadas as atividades de verificação e os planos de implementação e controle. Através das etapas mencionadas, pode-se verificar que a manutenção preventiva, associada às ferramentas empregadas, se destaca para a conservação de tornos mecânicos. Além disso, este plano de manutenção tem objetivo de contribuir com demais laboratórios de ensino e pesquisa, podendo ser replicado para uso em outras máquinas.
Downloads
Referências
CAPES. GEOCAPES. (2021). Sistema de Informações Georreferenciadas: Plataforma de Acesso Aberto. Brasília: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação.
Chin, H. H.; Varbanov, P. S.; Klemeš, J. J.; Benjamin, M. F.D.; Tan, R.R. (2020). Asset maintenance optimization approaches in the chemical and process industries – A review. Chemical Engineering Research and Design, 164, 162-194. https://doi.org/10.1016/j.cherd.2020.09.034 DOI: https://doi.org/10.1016/j.cherd.2020.09.034
Clarivate Analytics. (2017). Research in Brazil. A report for CAPES by Clarivate Analytics, 73 p.
CNC Machining Industry Trends 2019-3ERP. Recuperado de: https://www.3erp.com/blog/cnc-machining-industry-trends-2019/
Darestani, S. A., Ganji, M., & Imannezhad, R. (2020). What are the key determinants of maintenance performance? Production, 30, e20190155. https://doi.org/10.1590/0103-6513.20190155 DOI: https://doi.org/10.1590/0103-6513.20190155
De Jonge, B.; Scarf, P. A. (2020). A review on maintenance optimization. European Journal of Operational Research, 285(3), 805-824. https://doi.org/10.1016/j.ejor.2019.09.047 DOI: https://doi.org/10.1016/j.ejor.2019.09.047
Flynn, B. B., Sakakibara, S., Schroeder, R. G., Bates, K. A., Flynn, J. (1990). Empirical research methods in operations management. Journal of operations management, 9, 250–284. https://doi.org/10.1016/0272-6963(90)90098-X DOI: https://doi.org/10.1016/0272-6963(90)90098-X
Florian, E.; Sgarbossa, F.; Zennaro, I. Machine learning-based predictive maintenance: A cost-oriented model for implementation. International Journal of Production Economics, 236, 108-114. https://doi.org/10.1016/j.ijpe.2021.108114 DOI: https://doi.org/10.1016/j.ijpe.2021.108114
Kardec, A. & Nascif, J. (2012) Manutenção: Função Estratégica. 4ª.ed. Rio de Janeiro: Qualitymark Editora.
Kumar, U., Galar, D., Aditya, P., Stenstro¨m, C. (2013). Maintenance performance metrics: a state-of-the-art review. Journal of Quality in Maintenance Engineering, 19, 233-277. https://doi.org/10.1108/JQME-05-2013-0029 DOI: https://doi.org/10.1108/JQME-05-2013-0029
McGraw-Hill Handbooks. (2008). Maintenance Engineering Handbook. 7ª ed. McGraw-Hill Companies. https://doi.org/10.1036/0071546464
MCTIC. (2016). Estratégia Nacional de Ciência, Tecnologia e Inovação 2016-2022: sumário executivo. Documento do Ministério da Ciência, Tecnologia, Inovações e Comunicações, 132 p.
Nalbant, M., Gokkaya, H., Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials and Design, 28, 1379–1385. https://doi.org/10.1016/j.matdes.2006.01.008. DOI: https://doi.org/10.1016/j.matdes.2006.01.008
Onawumi, A.S.; Aremu, A.; Ajiboso, O.A.; Agboola, O.O.; Olayanju, T.M.A.; Osueke, C.O. (2021). Development of strategic maintenance prediction model for critical equipment maintenance. Materials Today: Proceedings, 44, 2820-2827. https://doi.org/10.1016/j.matpr.2020.12.1163 DOI: https://doi.org/10.1016/j.matpr.2020.12.1163
Pascal, V.; Toufik, A.; Manuel, A.; Florent, D.; Frédéric, K. (2019). Improvement indicators for Total Productive Maintenance policy. Control Engineering Practice. 82, 86-96. https://doi.org/10.1016/j.conengprac.2018.09.019 DOI: https://doi.org/10.1016/j.conengprac.2018.09.019
Pinto, G.; Silva, F.J.G.; Baptista, A.; Fernandes, N.O.; Casais, R.; Carvalho, C. (2020). TPM implementation and maintenance strategic plan – a case study. Procedia Manufacturing. 51, 1423-1430. https://doi.org/10.1016/j.promfg.2020.10.198 DOI: https://doi.org/10.1016/j.promfg.2020.10.198
Putri, N. T.; Taufik; Buana, F. S. (2020). Preventive Maintenance Scheduling by Modularity Design Applied to Limestone Crusher Machine. Procedia Manufacturing, 43, 682–687. https://doi.org/10.1016/j.promfg.2020.02.123 DOI: https://doi.org/10.1016/j.promfg.2020.02.123
Savsar, M. (2006). Effects of maintenance policies on the productivity of flexible manufacturing cells. Omega, 34(3), 274-282. https://doi.org/10.1016/j.omega.2004.10.010 DOI: https://doi.org/10.1016/j.omega.2004.10.010
Serge, M.; Patrick, T.; Duquenoy, F. (2016). An Overview of Linear, Air Bearing, and Piezo Stages in Three-Dimensional Microfabrication Using Two-photon Polymerization: Micro and Nano Technologies, Motion Systems, Cap. 6, 148-167. https://doi.org/10.1016/B978-0-323-35321-2.00008-X DOI: https://doi.org/10.1016/B978-0-323-35321-2.00008-X
Sharifi, M.; Taghipour, S. (2021). Optimal production and maintenance scheduling for a degrading multi-failure modes single-machine production environment. Applied Soft Computing, 106, 107312. https://doi.org/10.1016/j.asoc.2021.107312 DOI: https://doi.org/10.1016/j.asoc.2021.107312
Smith, R.; Mobley, R. K. (2008). Measuring Mean Time between Failures in Rules of Thumb for Maintenance and Reliability Engineers. MTBF User Guide, Cap. 17, 283-284. DOI: https://doi.org/10.1016/B978-075067862-9.50018-6
Theissler, A; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering and System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864 DOI: https://doi.org/10.1016/j.ress.2021.107864
Thomas Publishing Company. (2020). CNC Machining Projected to be $100B Industry by 2025. Recuperado de: https://www.thomasnet.com/insights/cnc-machining-projected-to-be-100b-industry-by-2025/
UNESCO. (2021). A corrida contra o tempo por um desenvolvimento mais inteligente; resumo executivo e cenário brasileiro. Relatório de ciências da UNESCO, 49 p.
Vitayasak, S.; Pongcharoen, P.; Hicks, C. (2019). Robust machine layout design under dynamic environment: Dynamic customer demand and machine maintenance. Expert Systems with Applications: X, 3, 100015. https://doi.org/10.1016/j.eswax.2019.100015 DOI: https://doi.org/10.1016/j.eswax.2019.100015
Yan, R.; Dunnett, S.J.; Jackson, L.M. (2018). Novel methodology for optimising the design, operation and maintenance of a multi-AGV system. Reliability Engineering and System Safety, 178, 130-139. https://doi.org/10.1016/j.ress.2018.06.003 DOI: https://doi.org/10.1016/j.ress.2018.06.003
Zhang, W.; Yang, D.; Wang, H. (2019). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Systems Journal, 13(3), 2213-2227. https://doi.org/10.1109/JSYST.2019.2905565 DOI: https://doi.org/10.1109/JSYST.2019.2905565
Zhang, Z.; Tang, Q. (2021). Integrating flexible preventive maintenance activities into two-stage assembly flow shop scheduling with multiple assembly machines. Computers & Industrial Engineering. 159, 107493. https://doi.org/10.1016/j.cie.2021.107493 DOI: https://doi.org/10.1016/j.cie.2021.107493
![](https://periodicos.ufes.br/public/journals/56/submission_38701_34307_coverImage_pt_BR.jpg)
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Brazilian Journal of Production Engineering
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
![](https://periodicos.ufes.br/public/site/images/revistabjpe/lateral-siteindexadores-16.png)
Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.