Maintenance plan proposal for a turning machine from machining laboratory of Brasília University

Authors

DOI:

https://doi.org/10.47456/bjpe.v8i4.38701

Keywords:

Maintenance plan, Preventive maintenance, Maintenance Tools, Mechanical Lathes

Abstract

Public universities contribute most of the research developed in Brazil, mainly from studies based on equipment available in the laboratories of the respective universities. In many cases, these equipments are kept operational for long periods through proper maintenance operations. With a focus on the machining area, this fact becomes even more relevant since the equipment is very robust and durable. From a bibliometric review, it was possible to verify that almost 50% of the studies developed in turning in Brazil uses equipment with more than 20 years. Thus, this study aims to develop a maintenance plan for the lathes (turning machines) available at the Machining Laboratory of the University of Brasília. For this, initially the most suitable type of maintenance was identified, followed by the determination of the verification components. After this step, verification activities, implementation and control plans were selected. Through the mentioned steps, it was identified that preventive maintenance, associated with the tools used, stands out for the conservation of lathes. In addition, this maintenance plan aims to contribute to other teaching and research laboratories and can be replicated for use on other machines.

Downloads

Download data is not yet available.

Author Biographies

Letícia Corrêa Bastianon Santiago, Universidade de Brasília, UnB, Brasil

Graduanda de Engenharia de Produção pela Universidade de Brasília (UnB). Atualmente é diretora de gestão na equipe Piratas do Cerrado Baja SAE, foi presidente do Centro Acadêmico de Engenharia Mecânica (2018), e estagiária na Magnólia Franqueadora Papelaria (2019-2020). (Texto informado pelo autor)

Bruno Souza Nunes, Universidade de Brasília, UnB, Brasil.

Atualmente é customer success/project management - Virtual 360 e estudante de engenharia de produção da na Universidade de Brasília. Tem experiência na área de gestão de projetos, mapeamento de processos, melhoria de processos, data science e pesquisa operacional.

Ian Rocca Amaral, Universidade de Brasília, UnB, Brasil.

Atualmente estagiando em uma equipe de processos com enfoque na melhoria de processos internos por meio mapeamento e levantamento de indicadores. Aluno de engenharia de produção na Universidade de Brasília e com experiência em gerenciamento de projetos com metodologia ágil, otimização de processos e habilidades com MatLab, Excel e Power BI.

Márcio da Silva Conceição, Universidade de Brasília, UnB, Brasil

Graduando em engenharia mecânica com experiência na área de desenvolvimento de projeto de maquinas, modelagem de sistemas. Familiaridade com técnicas de processos de fabricações, soldagem, usinagem e modelagem CAD 3D

Aline Gonçalves dos Santos, Universidade Federal de Catalão - UFCAT

Professora no curso de Engenharia de Produção na Universidade Federal de Catalão. Possui graduação em Engenharia de Produção pela Universidade Federal de Goiás (2014), mestrado (2016) e doutorado (2020) em Engenharia Mecânica pela Universidade Federal de Uberlândia, na área de concentração Processos de Fabricação

Déborah de Oliveira, http://lattes.cnpq.br/7264334163120189

Professora da Universidade de Brasília - UnB, Departamento de Engenharia Mecânica - ENM, coordenadora do Laboratório de Usinagem. Engenheira Aeronáutica (2015) formada pela Universidade Federal de Uberlândia (UFU). Em 2017 obteve o título de Mestre em Engenharia Mecânica e em 2019 de Doutora em Engenharia Mecânica, também pela Universidade Federal de Uberlândia. Possui ainda graduação em Engenharia Mecânica (2019) pelo Centro Universitário UNA de Uberlândia. Suas linhas de pesquisa e principais áreas de interesse são: usinagem, superligas e materiais de baixa usinabilidade, tolerâncias em peças usinadas, fluidos de corte e lubrificantes sólidos. Os seus principais trabalhos em usinagem são relacionados aos processos de Retificação e Microfresamento.

References

CAPES. GEOCAPES. (2021). Sistema de Informações Georreferenciadas: Plataforma de Acesso Aberto. Brasília: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da Educação.

Chin, H. H.; Varbanov, P. S.; Klemeš, J. J.; Benjamin, M. F.D.; Tan, R.R. (2020). Asset maintenance optimization approaches in the chemical and process industries – A review. Chemical Engineering Research and Design, 164, 162-194. https://doi.org/10.1016/j.cherd.2020.09.034 DOI: https://doi.org/10.1016/j.cherd.2020.09.034

Clarivate Analytics. (2017). Research in Brazil. A report for CAPES by Clarivate Analytics, 73 p.

CNC Machining Industry Trends 2019-3ERP. Recuperado de: https://www.3erp.com/blog/cnc-machining-industry-trends-2019/

Darestani, S. A., Ganji, M., & Imannezhad, R. (2020). What are the key determinants of maintenance performance? Production, 30, e20190155. https://doi.org/10.1590/0103-6513.20190155 DOI: https://doi.org/10.1590/0103-6513.20190155

De Jonge, B.; Scarf, P. A. (2020). A review on maintenance optimization. European Journal of Operational Research, 285(3), 805-824. https://doi.org/10.1016/j.ejor.2019.09.047 DOI: https://doi.org/10.1016/j.ejor.2019.09.047

Flynn, B. B., Sakakibara, S., Schroeder, R. G., Bates, K. A., Flynn, J. (1990). Empirical research methods in operations management. Journal of operations management, 9, 250–284. https://doi.org/10.1016/0272-6963(90)90098-X DOI: https://doi.org/10.1016/0272-6963(90)90098-X

Florian, E.; Sgarbossa, F.; Zennaro, I. Machine learning-based predictive maintenance: A cost-oriented model for implementation. International Journal of Production Economics, 236, 108-114. https://doi.org/10.1016/j.ijpe.2021.108114 DOI: https://doi.org/10.1016/j.ijpe.2021.108114

Kardec, A. & Nascif, J. (2012) Manutenção: Função Estratégica. 4ª.ed. Rio de Janeiro: Qualitymark Editora.

Kumar, U., Galar, D., Aditya, P., Stenstro¨m, C. (2013). Maintenance performance metrics: a state-of-the-art review. Journal of Quality in Maintenance Engineering, 19, 233-277. https://doi.org/10.1108/JQME-05-2013-0029 DOI: https://doi.org/10.1108/JQME-05-2013-0029

McGraw-Hill Handbooks. (2008). Maintenance Engineering Handbook. 7ª ed. McGraw-Hill Companies. https://doi.org/10.1036/0071546464

MCTIC. (2016). Estratégia Nacional de Ciência, Tecnologia e Inovação 2016-2022: sumário executivo. Documento do Ministério da Ciência, Tecnologia, Inovações e Comunicações, 132 p.

Nalbant, M., Gokkaya, H., Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials and Design, 28, 1379–1385. https://doi.org/10.1016/j.matdes.2006.01.008. DOI: https://doi.org/10.1016/j.matdes.2006.01.008

Onawumi, A.S.; Aremu, A.; Ajiboso, O.A.; Agboola, O.O.; Olayanju, T.M.A.; Osueke, C.O. (2021). Development of strategic maintenance prediction model for critical equipment maintenance. Materials Today: Proceedings, 44, 2820-2827. https://doi.org/10.1016/j.matpr.2020.12.1163 DOI: https://doi.org/10.1016/j.matpr.2020.12.1163

Pascal, V.; Toufik, A.; Manuel, A.; Florent, D.; Frédéric, K. (2019). Improvement indicators for Total Productive Maintenance policy. Control Engineering Practice. 82, 86-96. https://doi.org/10.1016/j.conengprac.2018.09.019 DOI: https://doi.org/10.1016/j.conengprac.2018.09.019

Pinto, G.; Silva, F.J.G.; Baptista, A.; Fernandes, N.O.; Casais, R.; Carvalho, C. (2020). TPM implementation and maintenance strategic plan – a case study. Procedia Manufacturing. 51, 1423-1430. https://doi.org/10.1016/j.promfg.2020.10.198 DOI: https://doi.org/10.1016/j.promfg.2020.10.198

Putri, N. T.; Taufik; Buana, F. S. (2020). Preventive Maintenance Scheduling by Modularity Design Applied to Limestone Crusher Machine. Procedia Manufacturing, 43, 682–687. https://doi.org/10.1016/j.promfg.2020.02.123 DOI: https://doi.org/10.1016/j.promfg.2020.02.123

Savsar, M. (2006). Effects of maintenance policies on the productivity of flexible manufacturing cells. Omega, 34(3), 274-282. https://doi.org/10.1016/j.omega.2004.10.010 DOI: https://doi.org/10.1016/j.omega.2004.10.010

Serge, M.; Patrick, T.; Duquenoy, F. (2016). An Overview of Linear, Air Bearing, and Piezo Stages in Three-Dimensional Microfabrication Using Two-photon Polymerization: Micro and Nano Technologies, Motion Systems, Cap. 6, 148-167. https://doi.org/10.1016/B978-0-323-35321-2.00008-X DOI: https://doi.org/10.1016/B978-0-323-35321-2.00008-X

Sharifi, M.; Taghipour, S. (2021). Optimal production and maintenance scheduling for a degrading multi-failure modes single-machine production environment. Applied Soft Computing, 106, 107312. https://doi.org/10.1016/j.asoc.2021.107312 DOI: https://doi.org/10.1016/j.asoc.2021.107312

Smith, R.; Mobley, R. K. (2008). Measuring Mean Time between Failures in Rules of Thumb for Maintenance and Reliability Engineers. MTBF User Guide, Cap. 17, 283-284. DOI: https://doi.org/10.1016/B978-075067862-9.50018-6

Theissler, A; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering and System Safety, 215, 107864. https://doi.org/10.1016/j.ress.2021.107864 DOI: https://doi.org/10.1016/j.ress.2021.107864

Thomas Publishing Company. (2020). CNC Machining Projected to be $100B Industry by 2025. Recuperado de: https://www.thomasnet.com/insights/cnc-machining-projected-to-be-100b-industry-by-2025/

UNESCO. (2021). A corrida contra o tempo por um desenvolvimento mais inteligente; resumo executivo e cenário brasileiro. Relatório de ciências da UNESCO, 49 p.

Vitayasak, S.; Pongcharoen, P.; Hicks, C. (2019). Robust machine layout design under dynamic environment: Dynamic customer demand and machine maintenance. Expert Systems with Applications: X, 3, 100015. https://doi.org/10.1016/j.eswax.2019.100015 DOI: https://doi.org/10.1016/j.eswax.2019.100015

Yan, R.; Dunnett, S.J.; Jackson, L.M. (2018). Novel methodology for optimising the design, operation and maintenance of a multi-AGV system. Reliability Engineering and System Safety, 178, 130-139. https://doi.org/10.1016/j.ress.2018.06.003 DOI: https://doi.org/10.1016/j.ress.2018.06.003

Zhang, W.; Yang, D.; Wang, H. (2019). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Systems Journal, 13(3), 2213-2227. https://doi.org/10.1109/JSYST.2019.2905565 DOI: https://doi.org/10.1109/JSYST.2019.2905565

Zhang, Z.; Tang, Q. (2021). Integrating flexible preventive maintenance activities into two-stage assembly flow shop scheduling with multiple assembly machines. Computers & Industrial Engineering. 159, 107493. https://doi.org/10.1016/j.cie.2021.107493 DOI: https://doi.org/10.1016/j.cie.2021.107493

Published

2022-09-29

How to Cite

Santiago, L. C. B., Nunes, B. S., Amaral, I. R., Conceição, M. da S., Santos, A. G. dos, & Oliveira, D. de. (2022). Maintenance plan proposal for a turning machine from machining laboratory of Brasília University. Brazilian Journal of Production Engineering, 8(4), 132–152. https://doi.org/10.47456/bjpe.v8i4.38701

Issue

Section

OPERATIONS & PRODUCTION PROCESS

Most read articles by the same author(s)