Use of a remote piloted aircraft (RPA) to manage a building work

Authors

DOI:

https://doi.org/10.47456/bjpe.v8i4.38145

Keywords:

RPA, Building work, Cartographic Precision, Change Detection

Abstract

Images collected with a Remotely Piloted Aircraft (ARP) can be used to detect changes and monitor the progress of a work. We sought to evaluate the potential of orthomosaics for monitoring building work. For this, 4 flights were carried out from 10/29/2021 to 12/03/2021, at 1 pm, with a Mavic 2 Pro model ARP in an enterprise located in the municipality of Eusébio-CE. The planimetric errors of the four flights ranged from 66 to 69 cm and the altimetric errors from 25 cm to 49 cm. Subsequently, in the AutoCad software, the four orthomosaics were interpreted so as to carry out the monitoring of the progress of the stages of paving, grass settlement and construction of the blocks. As a result, it was noticed that after 11/26 the paved area was below schedule, leading to delays in the other stages of the work. The Spectral Angle Difference (SAD) and Multivariate Alteration Detection (MAD) algorithms were also applied for change detection analysis, whereby both algorithms had errors greater than 40%, making the use of these algorithms impracticable to monitor the work.

Downloads

Download data is not yet available.

Author Biographies

Arielle Elias Arantes, Universidade Federal do Ceará - UFC

Graduada em Ciências Ambientais, mestre em Geografia e Doutora em Ciências Ambientais pela Universidade Federal de Goiás. Foi pesquisadora no Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG) da Universidade Federal de Goiás de 2009 a 2017, com participação em diversos projetos voltados para estudos da produtividade e da capacidade de suporte das pastagens, a partir do uso de séries temporais de imagens de resolução moderada. Atualmente conduz pesquisas avaliando os potenciais e limitações do uso de smartphones para determinar o posicionamento. Realiza pesquisas utilizando o SIG e análises de multicritério para a determinação de vagas de estacionamento em centros urbanos e para a determinação dos caminhos de serviço de menor custo para obras de terraplenagem. (Texto informado pelo autor)

Moisés de Andrade Abreu, Universidade Federal do Ceará - UFC

Possui ensino-medio-segundo-graupelo Instituto Federal do Ceará(2014). Atualmente é ESTAGIÁRIO da ALPHAVILLE URBANISMO. Tem experiência na área de Engenharia Civil. (Texto gerado automaticamente pela aplicação CVLattes)

References

Ellenberg, A., Branco, L., Krick, A., Bartoli, I., & Kontsos, A. (2014) Use of unmanned aerial vehicle for quantitative infrastructure evaluation. Journal of Infrastructure Systems, 21(3). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000246 DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000246

Espartel, L. (2019). Curso de Topografia. 9 ed. Rio de Janeiro, Globo, 1987.

Greenwood, W. W., Jerome, P. L., & Dimitrios, Z. (2019). Applications of UAVs in Civil Infrastructure. Journal of Infrastructure Systems, 25(2). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464 DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464

Irizarry, J. & Costa, D. B. (2016). Exploratory Study of potential Applications of Unmanned Aerial Systems for Construction Management Tasks. Journal of Management in Engineering, 32(3). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422 DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422

Kruse, F. A., Lefkoff, A. B., & Boradman, J. W. (1993). The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44, 145-163. https://doi.org/10.1016/0034-4257(93)90013-N DOI: https://doi.org/10.1016/0034-4257(93)90013-N

Lin, Z., Stamnes, S., Jin, Z., Laszlo, I., Tsay, S., Wiscombi, W., & Stammes, K. (2015). Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 157, 119-134. https://doi.org/10.1016/j.jqsrt.2015.02.014 DOI: https://doi.org/10.1016/j.jqsrt.2015.02.014

Maply. Site oficial Maply. Recuperado de https://www.maply.io/

Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sensing of Environment, 64, 1-19. https://doi.org/10.1016/S0034-4257(97)00162-4 DOI: https://doi.org/10.1016/S0034-4257(97)00162-4

Ruy, R. S., Tommaselli, A. M. G., & Reis, T. T. (2007). Sistema aerotransportado leve de aquisição de imagens digitais – SAAPI. In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 abril 2007, INPE, 1329-1335.

Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction, 41,1–14. https://doi.org/10.1016/j.autcon.2014.01.004 DOI: https://doi.org/10.1016/j.autcon.2014.01.004

Zhou, S., & Gheisari, M. (2018). Unmanned aerial system applications in construction: a systematic review. Construction Innovation, 18(4), 453-468. https://doi.org/10.1108/CI-02-2018-0010 DOI: https://doi.org/10.1108/CI-02-2018-0010

Published

2022-07-22

How to Cite

Arantes, A. E., & Abreu, M. de A. (2022). Use of a remote piloted aircraft (RPA) to manage a building work. Brazilian Journal of Production Engineering, 8(4), 44–63. https://doi.org/10.47456/bjpe.v8i4.38145

Issue

Section

OPERATIONS & PRODUCTION PROCESS