TTI-110025 spray tip drops spectrum under different working pressures

Authors

DOI:

https://doi.org/10.47456/bjpe.v9i2.40825

Keywords:

Uniformity, Application Technology, Droplet Diameter, Efficiency

Abstract

Hydraulic nozzles with air induction are widely used in spray applications, mainly because they reduce the effect of primary drift. However, there are still questions about the behavior of the droplet spectrum at certain pressures. The objective of this work was to analyze the droplet spectrum of the TTI 110025 air induction tip subjected to different working pressures by means of a laser particle analyzer in a protected environment. The experiment was conducted in a completely randomized design (DIC), represented by the pressures 200, 300, 400, 500 and 600 kPa, with four replications. The technical variables analyzed were Dv0.1, DMV, Dv0.9, AR, %V < 100 μm and %V > 500 μm. The TTI 110025 tip showed better results due to the decrease in variables Dv0.1, DMV, Dv0.9 and % V > 500 μm as the working pressure increased. The low value of the variable % V < 100 μm indicated a low risk of drift and the high value % V > 500 μm indicated a high potential for runoff in post-emergence applications. It is suggested to operate the TTI 110025 tip at a pressure of 600 kPa.

Downloads

Download data is not yet available.

Author Biographies

Jackson Roberto Dias Ribeiro, Federal University of Espirito Santo - UFES

Graduated in Agronomy from the Federal University of Espírito Santo (2000) and specialist in Business Management from Fundação Getúlio Vargas (2012). Master in Tropical Agriculture (UFES/CEUNES), Agricultural Defensive Application Technology research line at the Federal University of Espírito Santo, Campos São Mateus. He has experience in the forest sector with an emphasis on forestry activities in the management of implantation, reform and management of eucalyptus, in restoration of forest environments with native species and control of exotic ones. Knowledge and performance in the management of agricultural crops such as papaya, passion fruit and coffee in the northern region of Espírito Santo and extreme south of Bahia.

Luis Felipe Oliveira Ribeiro, Universidade Federal do Espirito Santo- UFES

Student of the Agronomy course at the Federal University of Espírito Santo, São Mateus campus (UFES/CEUNES). A member of the Laboratory of Mechanization and Agricultural Defensives (LMDA), he develops research in the area of ​​Technology for the Application of Agricultural Defensives and Foliar Fertilizers with an emphasis on spraying using unmanned aerial vehicles (UAVs) on agricultural crops. At Empresa Júnior de Agronomia (UFES/CEUNES)- Projagro, he was a Digital Marketing advisor (2021), then Director of Digital Marketing (2022).

Thales Gomes dos Santos, Federal University of Espirito Santo - UFES

Agronomist Engineer graduated from the Federal University of Espírito Santo (UFES/CEUNES). He worked as a digital marketing and human resources advisor at Empresa Junior de Agronomia - Projagro. Currently, studying for a master's degree in Tropical Agriculture at the Federal University of Espírito Santo, São Mateus campus, member of the Laboratory of Mechanization and Agricultural Defensives (LMDA), developing research in the area of ​​Application Technology, with emphasis on aerial spraying of agricultural crops using vehicles unmanned aerial vehicles (UAV's).

João Guilherme Pereira Nunes, Federal University of Espirito Santo - UFES

Agronomist from the Federal University of Espírito Santo (UFES/CEUNES) (2023). Master's student in Tropical Agriculture at the Federal University of Espírito Santo (UFES/CEUNES), focused on Application Technology, FAPES scholarship holder. Member of the Mechanization and Agricultural Defensives Laboratory (LMDA). Participation in the Junior Company PROJAGRO-UFES as Project Advisor (2018), Human Resources Advisor (2019), Human Resources Director (2019), Chief Executive Officer (2020), Marketing Advisor (2021). Participation in the Federation of Junior Companies of Espírito Santo, in the Ecosystem Impact team (2021).

Marconi Furtado Ribeiro Júnior, Federal University of Viçosa - UFV

Agricultural Engineer (2011), Master (2013) and Doctor (2016) in Agricultural Engineering (Agricultural Mechanization) from the Federal University of Viçosa (MG). It operates in the areas of Agricultural Mechanization, Agricultural Machine Design, Ergonomics and Safety in Agricultural Machines, Machine-Soil Ratio, Traction Capacity, Application of Agricultural Defensive Products and Testing of Agricultural Machines/Implements.

Edney Leandro da Vitória, Federal University of Espirito Santo - UFES

Agricultural Engineer (1997), Master (1999) and Doctor (2010) in Agricultural Engineering from the Federal University of Viçosa (MG). Professor in full dedication at the Federal University of Espírito Santo, Campus São Mateus, Brazil. In teaching, he acts as a professor of Mechanics, Engines and Agricultural Machines for the undergraduate degree in Agronomy and the subjects of Technology for the Application of Agricultural Defensives, Precision Agriculture and Neural Networks Applied in Agriculture in the Postgraduate Program in Tropical Agriculture (PPGAT /UFES). PPGAT/UFES coordinator (2018/2020; 2020/2022 and 2022/2024). Conducts undergraduate and graduate research. Ad hoc consultant for the magazines: CERES, Agricultural Engineering, Agricultural Engineering, Coffee Science, Comunicata and Semina. He has experience in Agricultural Engineering, with emphasis on Agricultural Mechanization, working mainly on the following topics: Performance of Agricultural Machines and Implements, Agricultural Defensive Application Technology and neural networks applied to precision agriculture.

References

Baesso, M. M., Teixeira, M. M., Ruas, R. A. A., Baesso, R. C. E. (2014). Tecnologias de aplicação de agrotóxicos. Revista Ceres, 61(suppl), 780-785. https://doi.org/10.1590/0034-737x201461000003 DOI: https://doi.org/10.1590/0034-737x201461000003

Butts, T., Samples, C., Franca, L., Dodds, D., Reynolds, D., Adams, J., & Kruger, G. (2019). Droplet size impact on efficacy of a Dicamba-plus-Glyphosate mixture. Weed Technology, 33(1), 66-74. https://doi.org/10.1017/wet.2018.118 DOI: https://doi.org/10.1017/wet.2018.118

Camolese, H. da. S., & Baio, F. H. R. (2016). Deposição de calda aplicada em volume reduzido no período noturno na cultura do algodoeiro. Revista Agrarian, 9(34), 365-373. https://ojs.ufgd.edu.br/index.php/agrarian/article/view/4423/3678

Cunha, J. P. A. R., Bueno, M. R., & Ferreira, M. C. (2010). Espectro de gotas de pontas de pulverização com adjuvantes de uso agrícola. Planta Daninha, 28(Planta daninha, 2010 28(spe)), 1153-1158. https://doi.org/10.1590/S0100-83582010000500023 DOI: https://doi.org/10.1590/S0100-83582010000500023

Cunha, J. P. A. R., Teixeira, M. M., Coury, J. R., & Ferreira, L. R. (2003). Avaliação de estratégias para redução da deriva de agrotóxicos em pulverizações hidráulicas. Planta Daninha, 21(Planta daninha, 2003 21(2), 325-332. https://doi.org/10.1590/S0100-83582003000200019 DOI: https://doi.org/10.1590/S0100-83582003000200019

Cunha, J. P., Teixeira, M. M., & Fernandes, H. C. (2007). Avaliação do espectro de gotas de pontas de pulverização hidráulicas utilizando a técnica da difração do raio laser. Engenharia Agrícola, 27, 10-15. https://doi.org/10.1590/S0100-69162007000200002 DOI: https://doi.org/10.1590/S0100-69162007000200002

Guo S, Li J, Yao W, Zhan Y, Li Y, Shi Y .(2019). Características de distribuição na deposição de gotículas de vórtice de campo de vento formado por UAV multi-rotor. PLoS ONE, 14 (7): e0220024. https://doi.org/10.1371/journal.pone.0220024 DOI: https://doi.org/10.1371/journal.pone.0220024

Hilz, E. & Vermeer, A. W. (2013). Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Protection, 44, 75-83. https://doi.org/10.1016/j.cropro.2012.10.020 DOI: https://doi.org/10.1016/j.cropro.2012.10.020

Hunter, J. E., Gannon, T. W., Richardson, R. J., Yelverton, F. H., & Leon, R. G. (2020). Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technology, 34(2), 235-240. https://doi.org/10.1017/wet.2019.101 DOI: https://doi.org/10.1017/wet.2019.101

Lamare, A., Zwertvaegher, I., Nuyttens, D., Balsari, P., Marucco, P., Grella, M., Caffini, A., Mylonas, N., Fountas, S., & Douzals, J. P. (2022). Performance of a Prototype Boom Sprayer for Bed-Grown Carrots Based on Canopy Deposition Optimization, Ground Losses and Spray Drift Potential Mitigation in Semi-Fiel Conditions. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094462 DOI: https://doi.org/10.3390/app12094462

Machado, T. M., Barbosa, M. F., Rezende, A. V. S. de, & Bueno, R. S. (2019). Pontas tipo cone com variação da taxa de aplicação e velocidade na cultura do algodoeiro. Nativa, 7(3), 301-305. https://doi.org/10.31413/nativa.v7i3.7528 DOI: https://doi.org/10.31413/nativa.v7i3.7528

Minguela, J. V. & Cunha, J. P. A. R., da. (2010). Manual de aplicação de produtos fitossanitários. Viçosa, MG: Aprenda Fácil Editora, 588p.

Queiroz, M. F. P. D. (2018). Espectro de gotas e características físicas de caldas com adjuvantes tensoativos e os herbicidas glyphosate e 2, 4-D, isolados e em mistura. Recuperado de http://hdl.handle.net/11449/153860

Ribeiro, L. F. O., Ribeiro, M. E. A., Santos, T. M., Aiala, M. L. C., & Vitória, E. L. da. (2023a). Pulverização simulada de herbicida nas entrelinhas da cultura da pimenta-do-reino. Brazilian Journal of Production Engineering, 9(1), 41-55. https://doi.org/10.47456/bjpe.v9i1.39943 DOI: https://doi.org/10.47456/bjpe.v9i1.39943

Ribeiro, L. F. O., Vitória, E. L. D., Soprani Júnior, G. G., Chen, P., & Lan, Y. (2023b). Impact of Operational Parameters on Droplet Distribution Using an Unmanned Aerial Vehicle in a Papaya Orchard. Agronomy, 13(4), 1138. https://doi.org/10.3390/agronomy13041138 DOI: https://doi.org/10.3390/agronomy13041138

Ribeiro,L. F. O. & Vitória, E. L. da. (2022). Qualidade de pulverização hidropneumática na cultura da macadâmia. Agrotrópica (Itabuna), 34(1), 81-88. https://doi.org/10.21757/0103-3816.2022v34n1p81-88 DOI: https://doi.org/10.21757/0103-3816.2022v34n1p81-88

Richardson, B., Rolando, C. A., Somchit, C., Dunker, C., Strand, T. M,, & Kimberley, M. O. (2020). Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Pest Manag Sci, 76(4), 1282-1290. https://doi.org/10.1002/ps.5638 DOI: https://doi.org/10.1002/ps.5638

Sasaki, R. S., Teixeira, M. M., Maciel, C. F. S., Alvarenga, C. B., & Forastiere, P. R. (2016). Espectro das gotas produzidas por pontas de jato plano duplo defasado com indução de ar. Engenharia Na Agricultura, 24(3), 211-218. https://doi.org/10.13083/reveng.v24i3.618 DOI: https://doi.org/10.13083/1414-3984/reveng.v24n3p211-218

Soela, D. M., Vitória, E. L., da, Falqueto, A. R., Freitas, I. L. de J., Braga, P. C. S., & Simon, C. A. (2021). Efeito de diferentes pontas e pressões de pulverização na aplicação de carbonato de cálcio em mudas de café conilon. Brazilian Journal of Production Engineering, 7(5), 93-102. https://doi.org/10.47456/bjpe.v7i5.36054 DOI: https://doi.org/10.47456/bjpe.v7i5.36054

Sossai, J. V., Vitória, E.L. Da, Lourenço, I., Freitas, J., Locatelli, T., Das, E., & Lacerda, G. (2020). Deposition and endo-and exodrifts in simulated herbicide spraying in Conilon coffee inter-rows. In Research Inventy: International Journal of Engineering and Science, 10(11), 38-44. Recuperado de www.researchinventy.com

Viana, R. G., Ferreira, L. R., Ferreira, M. C., Teixeira, M. M., Rosell, J. R., Tuffi Santos, L. D., & Machado, A. F. L. (2010). Distribuição volumétrica e espectro de gotas de pontas de pulverização de baixa deriva. Planta Daninha, 28, 439-446. https://doi.org/10.1590/S0100-83582010000200024 DOI: https://doi.org/10.1590/S0100-83582010000200024

Vitória, E. L. D., Krohling, C. A., Borges, F. R. P., Ribeiro, L. F. O., Ribeiro, M. E. A., Chen, P., ..., & Furtado Júnior, M. R. (2023). Efficiency of Fungicide Application an Using an Unmanned Aerial Vehicle and Pneumatic Sprayer for Control of Hemileia vastatrix and Cercospora coffeicola in Mountain Coffee Crops. Agronomy, 13(2), 340. https://doi.org/10.3390/agronomy13020340 DOI: https://doi.org/10.3390/agronomy13020340

Vitória, E. L., da. & Leite, J. (2014). Espectro de gotas de pontas de pulverização de jato cônico vazio. Enciclopedia Biosfera, 10(18). Recuperado de https://conhecer.org.br/ojs/index.php/biosfera/article/view/2777

Vitória, E. L. da, Crause, D. H., Freitas, I. L. D. J., Locatelli, T., Lacerda, E. D. G., Valle, J. M., ..., & Freitas, S. D. P. (2019). Droplet spectrum produced in pumpkin cultures submitted to different forms of spraying. Journal of Agricultural Science (Toronto), 11(14), 56-64. https://ccsenet.org/journal/index.php/jas/article/view/0/40354 DOI: https://doi.org/10.5539/jas.v11n14p56

Vitória, E. L., da, Souza A., D., d., Rossi, M. T., Favero, R. G., Fernandes, A. A., Silva, M. B., da, ... & Graça L., É., da. (2022). Spray Deposition on Watermelon Crop in Aerial and Ground Application. Journal of Agricultural Science, 14(3). https://doi.org/10.5539/jas.v14n3p172 DOI: https://doi.org/10.5539/jas.v14n3p172

Vitória, E. L., da. & Campanharo, A. (2016). Amostra de etiquetas de papel hidrossensíveis para determinação de espectro de gotas em pulverização no cafeeiro canéfora. Coffee Science,11(3), 368-374. Recuperado de http://www.sbicafe.ufv.br/handle/123456789/8032

Published

2023-06-16

How to Cite

Ribeiro, J. R. D., Ribeiro, L. F. O., Santos, T. G. dos, Nunes, J. G. P., Ribeiro Júnior, M. F., & Vitória, E. L. da. (2023). TTI-110025 spray tip drops spectrum under different working pressures. Brazilian Journal of Production Engineering, 9(2), 161–169. https://doi.org/10.47456/bjpe.v9i2.40825