Dispositivos tecnológicos en orden Picking System: Revisión bibliográfica
DOI:
https://doi.org/10.47456/bjpe.v8i6.39192Palabras clave:
depósito, tecnología, innovación, : preparación de pedidosResumen
Debido al comportamiento cambiante de los consumidores, el almacén ha recibido una gran demanda de pedidos. La actividad de elección y recogida de pedidos se considera la más crítica. Estas son las actividades que tienen el costo más alto y la que demanda mayor tiempo. Para traer un mejor desempeño en estas actividades, muchos especialistas han recurrido a dispositivos tecnológicos. Este artículo trae una revisión literaria con el objetivo de identificar qué dispositivos se encuentran en los estudios científicos con el fin de satisfacer la demanda de recolección de pedidos, e identificar los factores estudiados para cada uno, así como identificar puntos de vista y las oportinidades para futuras investigaciones, o desarrollo de nuevos dispositivos. Para eso se analizaron 101 artículos que contaban con algún dispositivo en la recogida de pedidos. Estos artículos fueron separados y categorizados según su uso y características. Como resultado, es posible que los investigadores y los tomadores de decisiones conozcan los dispositivos estudiados y comprendan cómo se comportan. A través de esta investigación se puede concluir que el interés por el tema ha crecido considerablemente en los últimos dos años, y que es necesario tomar en cuenta algunos factores antes de elegir el dispositivo, ellos son: layout, SKU, modelo de despliegue e implementación.
Descargas
Citas
Andriansyah, R., Etman, L.F.P., Adan, J. B. F., & Rooda, J. E. (2014). Design and Analysis of an Automated Order-Picking Workstation. Journal of Simulation, 8(2), 151-163. https://doi.org/10.1057/jos.2013.24. DOI: https://doi.org/10.1057/jos.2013.24
Andriolo, A., Battini, D., Calzavara, M., Gamberi, M., Peretti, U., Persona A. Pilati, F., & Sgarbossa, F. (2016). New RFID pick-to-light system: Operating characteristics and future potential. International Journal of RF Technologies, 7(1), 43–63. https://doi.org/10.3233/RFT-150071. DOI: https://doi.org/10.3233/RFT-150071
Armstrong, R. D., Cook, W. D., & Saipe, A. L. (1979). Optimal Batching in a Semi-Automated Order Picking System. Journal of the Operational Research Society, 30(8), 711-720. https://doi.org/10.1057/jors.1979.173. DOI: https://doi.org/10.1057/jors.1979.173
Atchade-Adelomou, P. Alonso-Linaje, G. Albo-Canals, J. & Casado-Fauli, D. (2021). QRobot: A Quantum Computing Approach in Mobile Robot Order Picking and Batching Problem Solver Optimization. Algorithms, 14 (7), 194. https://doi.org/10.3390/a14070194. DOI: https://doi.org/10.3390/a14070194
Atmaca, E, & Ozturk, A. (2013). Defining Order Picking Policy: A Storage Assignment Model and a Simulated Annealing Solution in AS/RS Systems. Applied Mathematical Modelling, 37(7), 5069-5079. https://doi.org/10.1016/j.apm.2012.09.057. DOI: https://doi.org/10.1016/j.apm.2012.09.057
Bansal, V., Roy, D., & Pazour, J. A. (2021). Performance Analysis of Batching Decisions in Waveless Order Release Environments for E‐commerce Stock‐to‐picker Order Fulfillment. International Transactions in Operational Research, 28(4), 1787-1820. https://doi.org/10.1111/itor.12921. DOI: https://doi.org/10.1111/itor.12921
Battini D, Calzavara M,Persona A, & Sgarbossa F. (2017) A comparative analysis of different paperless picking systems. Industrial Management & Data Systems, 115(3), 483–503. https://doi.org/10.1108/IMDS-10-2014-0314. DOI: https://doi.org/10.1108/IMDS-10-2014-0314
Beinschob, P., Meyer, M., Reinke, C., Digani, V., Secchi, C., & Sabattini, L. (2017). Semi-Automated Map Creation for Fast Deployment of AGV Fleets in Modern Logistics. Robotics and Autonomous Systems, 87, 281–295. DOI.org (Crossref), https://doi.org/10.1016/j.robot.2016.10.018. DOI: https://doi.org/10.1016/j.robot.2016.10.018
Bolu, A. & Korcak, O. (2021). Adaptive Task Planning for Multi-Robot Smart Warehouse. IEEE Access, 9, 27346-27358. https://doi.org/10.1109/ACCESS.2021.3058190. DOI: https://doi.org/10.1109/ACCESS.2021.3058190
Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati F. (2017). Time and Energy Optimal Unit-Load Assignment for Automatic S/R Warehouses. International Journal of Production Economics, 190, 133-145. https://doi.org/10.1016/j.ijpe.2016.07.024. DOI: https://doi.org/10.1016/j.ijpe.2016.07.024
Boysen, N., Fedtke, S., & Weidinger, F. (2018). Optimizing Automated Sorting in Warehouses: The Minimum Order Spread Sequencing Problem. European Journal of Operational Research, 270(1), 386–400. https://doi.org/10.1016/j.ejor.2018.03.026. DOI: https://doi.org/10.1016/j.ejor.2018.03.026
Boysen, N., Briskorn, D., & Emde, S. (2017A). Parts-to-Picker Based Order Processing in a Rack-Moving Mobile Robots Environment. European Journal of Operational Research, 262(2), 550-562. https://doi.org/10.1016/j.ejor.2017.03.053. DOI: https://doi.org/10.1016/j.ejor.2017.03.053
Boysen, N., FüBler, D., & Stephan K. (2020). See the Light: Optimization of Put‐to‐light Order Picking Systems. Naval Research Logistics (NRL), 67 (1), 3–20. https://doi.org/10.1002/nav.21883. DOI: https://doi.org/10.1002/nav.21883
Boysen, N., Briskorn, D., & Emde, S. (2017B). Sequencing of Picking Orders in Mobile Rack Warehouses. European Journal of Operational Research, 259(1), 293–307. https://doi.org/10.1016/j.ejor.2016.09.046. DOI: https://doi.org/10.1016/j.ejor.2016.09.046
Bozer, Y. A., & Aldarondo, F.J. (2018). A Simulation-Based Comparison of Two Goods-to-Person Order cking Systems in an Online Retail Setting. International Journal of Production Research, 56 (11), 3838–3858. https://doi.org/10.1080/00207543.2018.1424364. DOI: https://doi.org/10.1080/00207543.2018.1424364
Cai, J., Li, X., Liang, Y., & Ouyang, S. (2021). Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems. Sustainability, 13(10), 5644. https://doi.org/10.3390/su13105644. DOI: https://doi.org/10.3390/su13105644
Calzavara, M., Sgarbossa, F., & Persona, A. (2019). Vertical Lift Modules for Small Items Order Picking: An Economic Evaluation. International Journal of Production Economics, 210, 199–210. https://doi.org/10.1016/j.ijpe.2019.01.012. DOI: https://doi.org/10.1016/j.ijpe.2019.01.012
Cao, W., Jiang, P., Liu, B., & Jiang, K. (2018). Real-Time Order Scheduling and Execution Monitoring in Public Warehouses Based on Radio Frequency Identification. The International Journal of Advanced Manufacturing Technology, 95(5), 2473-2494. https://doi.org/10.1007/s00170-017-1381-z. DOI: https://doi.org/10.1007/s00170-017-1381-z
Chang, D. T., Wen, U. P., & Lin, J. T. (1993). Picking Strategies to the Two‐carousel‐single‐server System in an Automated Warehouse. Journal of the Chinese Institute of Engineers, 16(6), 817-824. https://doi.org/10.1080/02533839.1993.9677556. DOI: https://doi.org/10.1080/02533839.1993.9677556
Choy, K. L., Ho, G. T. S., & Lee, C. K. H. (2017). A RFID-Based Storage Assignment System for Enhancing the Efficiency of Order Picking. Journal of Intelligent Manufacturing, 28(1), 111–129. https://doi.org/10.1007/s10845-014-0965-9. DOI: https://doi.org/10.1007/s10845-014-0965-9
Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada, k., Rodriguez, A., Romano, J. R., & Wurman, P. R. (2018). Analysis and observations from the first amazon picking challenge. IEEE Transactions on Automation Science and Engineering, 15(1), 172-188. https://doi.org/10.1109/TASE.2016.2600527. DOI: https://doi.org/10.1109/TASE.2016.2600527
Custodio, L., & Machado, R. (2020). Flexible automated warehouse: A literature review and an innovative framework. The International Journal of Advanced Manufacturing Technology, 106 (1), 533–558. https://doi.org/10.1007/s00170-019-04588-z. DOI: https://doi.org/10.1007/s00170-019-04588-z
D’Avella, S., Tripicchio, P., & Avizzano, C. A. (2020). A Study on Picking Objects in Cluttered Environments: Exploiting Depth Features for a Custom Low-Cost Universal Jamming Gripper. Robotics and Computer-Integrated Manufacturing, 63, 101888. https://doi.org/10.1016/j.rcim.2019.101888. DOI: https://doi.org/10.1016/j.rcim.2019.101888
D’Souza, F., Costa, J., & Pires, J. N. (2020). Development of a solution for adding a collaborative robot to an industrial AGV. Industrial Robot: the international journal of robotics research and application, 47(5), 723-735. https://doi.org/10.1108/IR-01-2020-0004. DOI: https://doi.org/10.1108/IR-01-2020-0004
De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007) Design and Control of Warehouse Order Picking: A Literature Review. European Journal of Operational Research, 182(2), 481–501. https://doi.org/10.1016/j.ejor.2006.07.009. DOI: https://doi.org/10.1016/j.ejor.2006.07.009
De Vries, J., De Koste, R., & Stam D. (2016). Exploring the Role of Picker Personality in Predicting Picking Performance with Pick by Voice, Pick to Light and RF-Terminal Picking. International Journal of Production Research, 54(8), 2260–2274. https://doi.org/10.1080/00207543.2015.1064184. DOI: https://doi.org/10.1080/00207543.2015.1064184
Department of Financial and Management Engineering, School of Engineering, University of the Aegean, Chios, Greece, (2020). Testing vision picking technology in warehouse operations: Evidence from laboratory experiments. International Journal of Industrial Engineering and Management, 11(1), 19–30. https://doi.org/10.24867/IJIEM-2020-1-249. DOI: https://doi.org/10.24867/IJIEM-2020-1-249
Dukic, G., Opetuk, T., Lerher, T. (2015). A throughput model for a dual-tray Vertical lift Module with a human order picker. International Journal of Production Economics, 170, 874-881. https://doi.org/10.1016/j.ijpe.2015.04.009. DOI: https://doi.org/10.1016/j.ijpe.2015.04.009
Elsayed, E. A., & Stern, R.G. (1983). Computerized Algorithms for Order Processing in Automated Warehousing Systems. International Journal of Production Research, 21(4), 579–586. https://doi.org/10.1080/00207548308942392. DOI: https://doi.org/10.1080/00207548308942392
Fager, P., Sgarbossa, F., & Calzavara, M. (2021). Cost Modelling of Onboard Cobot-Supported Item Sorting in a Picking System. International Journal of Production Research, 59(11), 3269-3284. https://doi.org/10.1080/00207543.2020.1854484. DOI: https://doi.org/10.1080/00207543.2020.1854484
Fang, W., & An, Z. (2020). A Scalable Wearable AR System for Manual Order Picking Based on Warehouse Floor-Related Navigation. The International Journal of Advanced Manufacturing Technology, 109(7), 2023-2037. https://doi.org/10.1007/s00170-020-05771-3. DOI: https://doi.org/10.1007/s00170-020-05771-3
Fontin, J. R., & Lin, S. W. (2020). A Joint Comparative Analysis of Routing Heuristics and Paperless Picking Technologies Using Simulation and Data Envelopment Analysis. Applied Sciences, 10(24), 8777. https://doi.org/10.3390/app10248777. DOI: https://doi.org/10.3390/app10248777
Foroughi, A., Boysen, N., Emde, S., & Schneider M. (2021). High-Density Storage with Mobile Racks: Picker Routing and Product Location. Journal of the Operational Research Society, 72(3), 535-553. https://doi.org/10.1080/01605682.2019.1700180. DOI: https://doi.org/10.1080/01605682.2019.1700180
Füchtenhans, M., Grosse E. H., & Glock C. H. (2021). Smart Lighting Systems: State-of-the-Art and Potential Applications in Warehouse Order Picking. International Journal of Production Research, 59 (12), 3817–3839. https://doi.org/10.1080/00207543.2021.1897177. DOI: https://doi.org/10.1080/00207543.2021.1897177
Gajšek, B., Ðukić, G., Butlewski, M., Opetuk, T., Cajner, H., & Kač, S.M. (2020). The Impact of the Applied Technology on Health and Productivity in Manual ‘Picker-to-Part’ Systems. Work, 65(3), 525–536. https://doi.org/10.3233/WOR-203107. DOI: https://doi.org/10.3233/WOR-203107
Gong, Y. Jin, M., & Yuan Z. (2021). Robotic Mobile Fulfilment Systems Considering Customer Classes. International Journal of Production Research, 59(16), 5032-5049. https://doi.org/10.1080/00207543.2020.1779370. DOI: https://doi.org/10.1080/00207543.2020.1779370
Guo, A., Wu, X., Shen, Z., Starner, T., Baumann, H., & Gililand, S. (2015). Order Picking with Head-Up Displays. Computer, 48(6), 16–24. https://doi.org/10.1109/MC.2015.166. DOI: https://doi.org/10.1109/MC.2015.166
Habazin, J., Gasnovic, A., & Bajor I. (2017). Order Picking Process in Warehouse: Case Study of Dairy Industry in Croatia. Promet - Traffic&Transportation, 29(1), 57–65. https://doi.org/10.7307/ptt.v29i1.2106. DOI: https://doi.org/10.7307/ptt.v29i1.2106
Hanson, R., Falkenstrõm, W., & Miettinen, M. (2017). Augmented Reality as a Means of Conveying Picking Information in Kit Preparation for Mixed-Model Assembly. Computers & Industrial Engineering, 113, 570-575. https://doi.org/10.1016/j.cie.2017.09.048. DOI: https://doi.org/10.1016/j.cie.2017.09.048
He, Z., Aggarwal, V., & Nof, S. Y. (2018). Differentiated Service Policy in Smart Warehouse Automation. International Journal of Production Research, 56(22), 6956-6970. https://doi.org/10.1080/00207543.2017.1421789. DOI: https://doi.org/10.1080/00207543.2017.1421789
Hou, J. L., Wu, N., & Wu, Y. J. (2009). A Job Assignment Model for Conveyor-Aided Picking System. Computers & Industrial Engineering, 56(4), 1254-1264. https://doi.org/10.1016/j.cie.2008.07.017. DOI: https://doi.org/10.1016/j.cie.2008.07.017
Hwang, H., Baek, W. J., & Lee, M. K. (1988). Clustering Algorithms for Order Picking in an Automated Storage and Retrieval System. International Journal of Production Research, 26(2), 189–201. https://doi.org/10.1080/00207548808947853. DOI: https://doi.org/10.1080/00207548808947853
Jaghbeer, Y., Hanson, R., Johansson, M. I. (2020). Automated Order Picking Systems and the Links between Design and Performance: A Systematic Literature Review. International Journal of Production Research, 58 (15), 4489–4505. https://doi.org/10.1080/00207543.2020.1788734. DOI: https://doi.org/10.1080/00207543.2020.1788734
Jerman, B., Ekren, B.Y., Küxükyasar, M., & Lerher, T. (2021). Simulation-Based Performance Analysis for a Novel AVS/RS Technology with Movable Lifts. Applied Sciences, 11(5), 22-83. www.mdpi.com, https://doi.org/10.3390/app11052283. DOI: https://doi.org/10.3390/app11052283
Jiang, H. (2020). Solving Multi-Robot Picking Problem in Warehouses: A Simulation Approach. International Journal of Simulation Modelling, 19 (4), 701-712. https://doi.org/10.2507/IJSIMM19-4-CO19. DOI: https://doi.org/10.2507/IJSIMM19-4-CO19
Jiang, Z. Z., Wan, M., Pei, Z., & Qin, X. (2021). Spatial and Temporal Optimization for Smart Warehouses with Fast Turnover. Computers & Operations Research, 125, 105091. https://doi.org/10.1016/j.cor.2020.105091. DOI: https://doi.org/10.1016/j.cor.2020.105091
Kaipa, K. N., Kankanhalli-nagendra, A. S., Kumbla, N. B., Shriyam, S., Thevendria-karthic, S., Mavel, J. A., Gupta, S. K., Addressing Perception Uncertainty Induced Failure Modes in Robotic Bin-Picking. Robotics and Computer-Integrated Manufacturing, 42, 17–38. https://doi.org/10.1016/j.rcim.2016.05.002. DOI: https://doi.org/10.1016/j.rcim.2016.05.002
Keung, K. L., Lee, C. K. M., Ji, P., & Ng, K. K. H. (2020). Cloud-Based Cyber-Physical Robotic Mobile Fulfillment Systems: A Case Study of Collision Avoidance. IEEE Access, 8, 89318-89336. https://doi.org/10.1109/ACCESS.2020.2992475. DOI: https://doi.org/10.1109/ACCESS.2020.2992475
Khachatryan, M., & McGinnis, L. F. (2014). Picker Travel Time Model for an Order Picking System with Buffers. IIE Transactions, 46(9), 894–904. https://doi.org/10.1080/0740817X.2013.823001. DOI: https://doi.org/10.1080/0740817X.2013.823001
Khojasteh, Y., & Son, J. D. (2016). A Travel Time Model for Order Picking Systems in Automated Warehouses. The International Journal of Advanced Manufacturing Technology, 86(5), 2219-2229. https://doi.org/10.1007/s00170-016-8340-y. DOI: https://doi.org/10.1007/s00170-016-8340-y
Kim, B. I., Heragu, S. S., Graves, R. J., & Onge, A. S. (2003). Clustering-Based Order-Picking Sequence Algorithm for an Automated Warehouse. International Journal of Production Research, 41(15), 3445-3460. https://doi.org/10.1080/0020754031000120005. DOI: https://doi.org/10.1080/0020754031000120005
Kim, H. J., Pais, C., & Shen, Z. J. M. (2020). Item Assignment Problem in a Robotic Mobile Fulfillment System. IEEE Transactions on Automation Science and Engineering, 17(4), 1854-1867. https://doi.org/10.1109/TASE.2020.2979897. DOI: https://doi.org/10.1109/TASE.2020.2979897
Kim, Y., & Hong, S (2020). Two Picker Cooperation Strategies for Zone Picking Systems with PTL Technology. IEEE Access, 8, 106059-106070. https://doi.org/10.1109/ACCESS.2020.2999342. DOI: https://doi.org/10.1109/ACCESS.2020.2999342
Kong, X. T. R., Yang, X., Peng, K. L., & Li, C. Z. (2020). Cyber Physical System-Enabled Synchronization Mechanism for Pick-and-Sort Ecommerce Order Fulfilment. Computers in Industry, 118, 103-220. https://doi.org/10.1016/j.compind.2020.103220. DOI: https://doi.org/10.1016/j.compind.2020.103220
Krug, R., Stoyanov, T., Tincani, V., Andreasso, H., Mosberger, R., Fantoni, G., & Lilienthal, A. (2016). The Next Step in Robot Commissioning: Autonomous Picking and Palletizing. IEEE Robotics and Automation Letters, 1 (1), 546-553. https://doi.org/10.1109/LRA.2016.2519944. DOI: https://doi.org/10.1109/LRA.2016.2519944
Kudelska, I., & Niedbał, R. (2020) Technological and Organizational Innovation in Warehousing Process – Research over Workload of Staff and Efficiency of Picking Stations. E+M Ekonomie a Management, 23 (3), 67–81. https://doi.org/10.15240/tul/001/2020-3-005. DOI: https://doi.org/10.15240/tul/001/2020-3-005
Lamballais, T., Roy, D., & De Koster, R. B. M. (2020). Inventory Allocation in Robotic Mobile Fulfillment Systems. IISE Transactions, 52(1), 1–17. https://doi.org/10.1080/24725854.2018.1560517. DOI: https://doi.org/10.1080/24725854.2018.1560517
Lamballais, T., Roy, D., & De Koster R. B. M. (2017). Estimating Performance in a Robotic Mobile Fulfillment System. European Journal of Operational Research, 256(3), 976-990. https://doi.org/10.1016/j.ejor.2016.06.063. DOI: https://doi.org/10.1016/j.ejor.2016.06.063
Latif, U. K., & Shin, S. Y. (2020). OP-MR: The Implementation of Order Picking Based on Mixed Reality in a Smart Warehouse. The Visual Computer, 36(7), 1491-1500. https://doi.org/10.1007/s00371-019-01745-z. DOI: https://doi.org/10.1007/s00371-019-01745-z
Lee, H. Y., & Murray, C. C. (2019). Robotics in Order Picking: Evaluating Warehouse Layouts for Pick, Place, and Transport Vehicle Routing Systems. International Journal of Production Research, 57(18), 5821-4841. https://doi.org/10.1080/00207543.2018.1552031. DOI: https://doi.org/10.1080/00207543.2018.1552031
Lee, J. A., Chang, Y. S., & Karwowski, W. (2020). Assessment of working postures and physical loading in advanced order picking tasks: A case study of human interaction with automated warehouse goods-to-picker systems. Work, 67(4), 855-866. https://doi.org/10.3233/WOR-203337. DOI: https://doi.org/10.3233/WOR-203337
Lee, S. D., & Kuo Y.C. (2008) Exact and Inexact Solution Procedures for the Order Picking in an Automated Carousal Conveyor. International Journal of Production Research, 46 (16), 4619–4636. https://doi.org/10.1080/00207540601166990. DOI: https://doi.org/10.1080/00207540601166990
Liu, D. Zhao X, Wang Y. (2019). Items Assignment Optimization for Complex Automated Picking Systems. Cluster Computing, 22 (3). Springer Link, https://doi.org/10.1007/s10586-017-1529-5. DOI: https://doi.org/10.1007/s10586-017-1529-5
Liu, D. Mou, S. Wu, Y. Shan, G. (2015). Research on Hybrid Picking Strategy in an Automated Order Picking System. International Journal of Control and Automation, 8 (8). DOI.org (Crossref), https://doi.org/10.14257/ijca.2015.8.8.12. DOI: https://doi.org/10.14257/ijca.2015.8.8.12
Liu, J. E. Zhang, S. Liu, H. (2019). Research on AGV Path Planning under ‘Parts-to-Picker’ Mode. Open Journal of Social Sciences, 07 (6), 1–14. DOI.org (Crossref), https://doi.org/10.4236/jss.2019.76001. DOI: https://doi.org/10.4236/jss.2019.76001
Marchet G, Melacini M, Perotti S. (2015) Investigating Order Picking System Adoption: A Case-Study-Based Approach. International Journal of Logistics Research and Applications, 18 (1), 82–98. DOI.org (Crossref), https://doi.org/10.1080/13675567.2014.945400. DOI: https://doi.org/10.1080/13675567.2014.945400
Mnyusiwalla, H. Triantafyllou, P. Sotiropoulos, P. Roa, M.A. Fried, W. Sundaram, A.M. Russell, D. Deacon, G. (2020). A Bin-Picking Benchmark for Systematic Evaluation of Robotic Pick-and-Place Systems. IEEE Robotics and Automation Letters, 5 (2). DOI.org (Crossref), https://doi.org/10.1109/LRA.2020.2965076. DOI: https://doi.org/10.1109/LRA.2020.2965076
Nicolas, L. Yannick, F. Ramzi. H. (2018). Order Batching in an Automated Warehouse with Several Vertical Lift Modules: Optimization and Experiments with Real Data. European Journal of Operational Research, 267 (3). DOI.org (Crossref), https://doi.org/10.1016/j.ejor.2017.12.037. DOI: https://doi.org/10.1016/j.ejor.2017.12.037
Park, B. C. Frazelle, E. H. White, J. A. (1999). Buffer sizing models for end-of-aisle order picking systems. IIE Transactions, 31 (1). DOI.org (Crossref), https://doi.org/10.1023/A:1007520600713. DOI: https://doi.org/10.1080/07408179908969803
Polten, L, & Emde, S. (2021). Scheduling Automated Guided Vehicles in Very Narrow Aisle Warehouses. Omega, 99. DOI.org (Crossref), https://doi.org/10.1016/j.omega.2020.102204. DOI: https://doi.org/10.1016/j.omega.2020.102204
Poon, T.C. Choy, K.L. Chow, H.K.H. Lau, H.C.W. Chan, F.T.S. Ho, K.C. (2009). A RFID Case-Based Logistics Resource Management System for Managing Order-Picking Operations in Warehouses. Expert Systems with Applications, 36 (4). DOI.org (Crossref), https://doi.org/10.1016/j.eswa.2008.10.011. DOI: https://doi.org/10.1016/j.eswa.2008.10.011
Rajotia, S. Shanker, K. Batra, J. L. (1998). Determination of Optimal AGV Fleet Size for an FMS. International Journal of Production Research, 36 (5). DOI.org (Crossref), https://doi.org/10.1080/002075498193273. DOI: https://doi.org/10.1080/002075498193273
Ramtin, F. & Pazour, J. A. (2014). Analytical models for an automated storage and retrieval system with multiple in-the-aisle pick positions. IIE Transactions, 46 (9). https://doi.org/10.1080/0740817X.2014.882037. DOI: https://doi.org/10.1080/0740817X.2014.882037
Ramtin, F. & Pazour, J. A. (2015). Product Allocation Problem for an AS/RS with Multiple in-the-Aisle Pick Positions. IIE Transactions, 47 (12). DOI.org (Crossref), https://doi.org/10.1080/0740817X.2015.1027458. DOI: https://doi.org/10.1080/0740817X.2015.1027458
Reif, R. Günthner, W. A. Schwerdtfeger, B. Klinker, G. (2010). Evaluation of an Augmented Reality Supported Picking System Under Practical Conditions. Computer Graphics Forum, 29 (1), 2–12. DOI.org (Crossref), https://doi.org/10.1111/j.1467-8659.2009.01538.x. DOI: https://doi.org/10.1111/j.1467-8659.2009.01538.x
Reif, R. & Günthener, W. A. (2009). Pick-by-Vision: Augmented Reality Supported Order Picking. The Visual Computer, 25 (5). Springer Link, https://doi.org/10.1007/s00371-009-0348-y. DOI: https://doi.org/10.1007/s00371-009-0348-y
Roodbergen, K. J. & Vis, I. F. A. (2009). A Survey of Literature on Automated Storage and Retrieval Systems. European Journal of Operational Research, 194 (2). DOI.org (Crossref), https://doi.org/10.1016/j.ejor.2008.01.038. DOI: https://doi.org/10.1016/j.ejor.2008.01.038
Roy, D. Nigam, S. De koster, R. Adan, I. Resing J. (2019). Robot-Storage Zone Assignment Strategies in Mobile Fulfillment Systems. Transportation Research Part E: Logistics and Transportation Review, 122. DOI.org (Crossref), https://doi.org/10.1016/j.tre.2018.11.005. DOI: https://doi.org/10.1016/j.tre.2018.11.005
Schwerdtfeger, B. Reif, R. Günthner, W. A. Klinker, G. (2011). Pick-by-Vision: There Is Something to Pick at the End of the Augmented Tunnel. Virtual Reality, 15 (2). Springer Link, https://doi.org/10.1007/s10055-011-0187-9. DOI: https://doi.org/10.1007/s10055-011-0187-9
Sgarbossa, F. Calzavara, M. Persona, A. (2019). Throughput models for a dual-bay VLM order picking system under different configurations. Industrial Management & Data Systems, 119 (6). https://doi.org/10.1108/IMDS-11-2018-0518. DOI: https://doi.org/10.1108/IMDS-11-2018-0518
Tang, H., Cheng, X., Jiang, W., & Chen, S. (2021). Research on Equipment Configuration Optimization of AGV Unmanned Warehouse. IEEE Access, 9, 47946-47959. https://doi.org/10.1109/ACCESS.2021.3066622. DOI: https://doi.org/10.1109/ACCESS.2021.3066622
Tappia, E., Roy, D., Melacini, M., & De koster, R. (2019). Integrated Storage-Order Picking Systems: Technology, Performance Models, and Design Insights. European Journal of Operational Research, 274(3) 947–965. https://doi.org/10.1016/j.ejor.2018.10.048. DOI: https://doi.org/10.1016/j.ejor.2018.10.048
Tu, M., Yang, M. F., Kao, S. L., Lin, F. C., Wu M. H., & Lin, C. K. (2021). Using a Heuristic Multi-Objective Genetic Algorithm to Solve the Storage Assignment Problem for CPS-Based Pick-and-Pass System. Enterprise Information Systems, 15 (9), 1238-1259. https://doi.org/10.1080/17517575.2020.1811388. DOI: https://doi.org/10.1080/17517575.2020.1811388
Valle, C. A., & Beasley, J. E. (2021). Order Allocation, Rack Allocation and Rack Sequencing for Pickers in a Mobile Rack Environment. Computers & Operations Research, 125, 105090. https://doi.org/10.1016/j.cor.2020.105090. DOI: https://doi.org/10.1016/j.cor.2020.105090
Venkitasubramony, R., & Adil, G. K. (2017). Design of an Order-Picking Warehouse Factoring Vertical Travel and Space Sharing. The International Journal of Advanced Manufacturing Technology, 91(5), 1921–1934. https://doi.org/10.1007/s00170-016-9879-3. DOI: https://doi.org/10.1007/s00170-016-9879-3
Wang, Y., Shandong, M., & Changpeng, S. (2014). Selecting between Pick-and-sort System and Carousel System Based on Order Clustering and Genetic Algorithm. International Journal of Control and Automation, 7 (3), 89–102. https://doi.org/10.14257/ijca.2014.7.4.09. DOI: https://doi.org/10.14257/ijca.2014.7.4.09
Wang, Z., Sheu, J. B., Teo, C. P., & Xue, G. (2021). Robot Scheduling for Mobile‐Rack Warehouses: Human–Robot Coordinated Order Picking Systems. Production and Operations Management. 31(1), 98-116. https://doi.org/10.1111/poms.13406. DOI: https://doi.org/10.1111/poms.13406
Weidinger, F., Boysen, N., & Briskorn, D. (2018). Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses. Transportation Science, 52(6), 1479-1495. https://doi.org/10.1287/trsc.2018.0826. DOI: https://doi.org/10.1287/trsc.2018.0826
Winkelhaus, S., Grosse, E. H., & Morana S. (2021) Towards a Conceptualisation of Order Picking 4.0. Computers & Industrial Engineering, 159, 107511. https://doi.org/10.1016/j.cie.2021.107511. DOI: https://doi.org/10.1016/j.cie.2021.107511
Wu, S., Chi, C., Wang, W., & Wu, Y. (2020). Research of the Layout Optimization in Robotic Mobile Fulfillment Systems. International Journal of Advanced Robotic Systems, 17(6). https://doi.org/10.1177/1729881420978543. DOI: https://doi.org/10.1177/1729881420978543
Wu, Y. & Wu, Y. (2014). Taboo Search Algorithm for Item Assignment in Synchronized Zone Automated Order Picking System. Chinese Journal of Mechanical Engineering, 27(4), 860-866. https://doi.org/10.3901/CJME.2014.0430.084. DOI: https://doi.org/10.3901/CJME.2014.0430.084
Wu, Y., Zhou, C., Wu, Y., & Kong, X. T. R. (2017). Zone Merge Sequencing in an Automated Order Picking System. International Journal of Production Research, 55(21), 6500-6515. https://doi.org/10.1080/00207543.2016.1264641. DOI: https://doi.org/10.1080/00207543.2016.1264641
Xie, L., Thieme, N., Krenzler, R., & Li, H. (2021). Introducing Split Orders and Optimizing Operational Policies in Robotic Mobile Fulfillment Systems. European Journal of Operational Research, 288(1), 80–97. https://doi.org/10.1016/j.ejor.2020.05.032. DOI: https://doi.org/10.1016/j.ejor.2020.05.032
Xing, L., Liu, Y., Li, H., Wu, C. C., & Lin, W. C., & Chen, X. (2020). A Novel Tabu Search Algorithm for Multi-AGV Routing Problem. Mathematics, 8(2), 279. https://doi.org/10.3390/math8020279. DOI: https://doi.org/10.3390/math8020279
Yang, D., Wu, Y., & Huo D, (2021). Research on Design of Cross-Aisles Shuttle-Based Storage/Retrieval System Based on Improved Particle Swarm Optimization. IEEE Access, 9, 67786-67796. https://doi.org/10.1109/ACCESS.2021.3077974. DOI: https://doi.org/10.1109/ACCESS.2021.3077974
Yoshitake, H., Kamoshida, R., & Nagashima, Y. (2019). New Automated Guided Vehicle System Using Real-Time Holonic Scheduling for Warehouse Picking. IEEE Robotics and Automation Letters, 4(2), 1045-1052. https://doi.org/10.1109/LRA.2019.2894001. DOI: https://doi.org/10.1109/LRA.2019.2894001
Yuan, Z. & Gong, Y. Y. (2017). Bot-In-Time Delivery for Robotic Mobile Fulfillment Systems. IEEE Transactions on Engineering Management, 64(1), 83–93. https://doi.org/10.1109/TEM.2016.2634540. DOI: https://doi.org/10.1109/TEM.2016.2634540
Zhuang, Z., Huang, Z., Sun, Y., & Qin, W. (2021). Optimization for Cooperative Task Planning of Heterogeneous Multi-Robot Systems in an Order Picking Warehouse. Engineering Optimization, 53(10), 1715-1732. https://doi.org/10.1080/0305215X.2020.1821198. DOI: https://doi.org/10.1080/0305215X.2020.1821198
Zou, B., Gong, Y., Xu, X., & Yuan. Z. (2017). Assignment rules in robotic mobile fulfilment systems for online retailers. International Journal of Production Research, 55(20), 6175-6192. https://doi.org/10.1080/00207543.2017.1331050. DOI: https://doi.org/10.1080/00207543.2017.1331050
Zou, B. Xu, X., Gong, Y., & De koster, R. (2018). Evaluating Battery Charging and Swapping Strategies in a Robotic Mobile Fulfillment System. European Journal of Operational Research, 267(2), 733-753. https://doi.org/10.1016/j.ejor.2017.12.008 DOI: https://doi.org/10.1016/j.ejor.2017.12.008
Xue, F., Tang, H., Su, Q., & Li, T. (2019). Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition. KSII Transactions on Internet and Information Systems, 13(7), 3566-3582. DOI: https://doi.org/10.3837/tiis.2019.07.013
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Brazilian Journal of Production Engineering
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.