Bibliometrix applied to computational simulation for wind generator
DOI:
https://doi.org/10.21712/lajer.2024.v11.n2.p119-134Keywords:
bibliometry, wind turbine, numerical study, aerodynamic optimization, renewable energyAbstract
This study presents a comprehensive bibliometric analysis of computational simulations in wind turbine projects, addressing their pivotal role amid growing demands for renewable energy and engineering project optimization. The primary objective is to discern trends, focal areas, and global collaboration networks.
Utilizing Scopus and Web of Science databases, supported by CAPES, all pertinent publications on computational simulations in wind turbine projects were scrutinized. Bibliometric metrics were analyzed using the bibliometrix library in R.
Findings reveal a increase in publications since 2022, particularly in aerodynamic optimization and offshore projects. Leading contributors are universities, research centers across Europe, North America, and prominently China. Co-authorship networks underscore significant collaborations among global academic institutions. Key terms such as "computational modeling," "CFD (Computational Fluid Dynamics)," and "wind turbine" predominate in literature.
The analysis confirms the escalating significance of computational simulations in wind turbine projects, underscored by burgeoning publications and international partnerships. Integration of emerging technologies like artificial intelligence and machine learning into market practices is evident. This study serves as a foundational resource for future researchers and industry stakeholders, identifying promising avenues and areas necessitating further exploration.
Downloads
References
Abedinia, O., Oveis, M., et al. (2020). 'Improved EMD-Based Complex Prediction Model for Wind Power Forecasting'. IEEE Transactions on Sustainable Energy, 11(4), pp. 2790–2802. https://doi.org/10.1109/T-STE.2020.2976038.
Ahmad, I., et al. (2023). 'Fuzzy logic control of an artificial neural network-based floating offshore wind turbine model integrated with four oscillating water columns'. Ocean Engineering, 269, p. 113578. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2022.113578.
Alhassan, M., et al. (2022). 'Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production'. Fuel, 328, p. 125240. ISSN: 0016-2361. Available at: https://doi.org/10.1016/j.fuel.2022.125240.
Alom, N. and Saha, U.K. (2019). 'Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation'. Energy Conversion and Management, 186, pp. 267–277. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2019.02.058.
Aria, M. and Cuccurullo, C. (2017). 'Bibliometrix: An R-tool for comprehensive science mapping analysis'. Journal of Informetrics, 11(4), pp. 959–975. Available at: https://doi.org/10.1016/j.joi.2017.08.007.
Benmoussa, A. and Páscoa, J.C. (2023). 'Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio'. International Journal of Thermofluids, 17, p. 100258. ISSN: 2666-2027. Available at: https://doi.org/10.1016/j.ijft.2022.100258.
Bhaskaran, S., et al. (2023). 'A Code-to-Code Comparison for Dynamic Modeling and Response Analysis of Offshore Wind Turbine Blade Mating Process'. Journal of Offshore Mechanics and Arctic Engineering, 145(6), p. 062003. ISSN: 0892-7219. https://doi.org/10.1115/1.4056617.
Bianchini, A., et al. (2019). 'On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines'. Energy Conversion and Management, 184, pp. 402–415. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2019.01.068.
Bortoluzzi, M., Souza, C.C., and Furlan, M. (2021). 'Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models'. Renewable and Sustainable Energy Reviews, 143, p. 110958. ISSN: 1364-0321. https://doi.org/10.1016/j.rser.2021.110958.
Cao, Q., et al. (2021). 'Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: A comprehensive numerical and experimental comparison'. Ocean Engineering, 232, p. 109138. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2021.109138.
Catumba, B.D., et al. (2023). 'Sustainability and challenges in hydrogen production: An advanced bibliometric analysis'. International Journal of Hydrogen Energy, 48(22), pp. 7975–7992. ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2022.11.215.
Cheng, H., et al. (2021). 'A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas'. International Journal of Multiphase Flow, 134, p. 103441. ISSN: 0301-9322. Available at: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103441.
Cheng, P., Huang, Y., and Wan, D. (2019). 'A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine'. Ocean Engineering, 173, pp. 183–196. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2018.12.021.
Crane, D. (1972). Invisible Colleges; Diffusion of Knowledge in Scientific Communities. 1st edn. Chicago: University of Chicago Press.
Cunha Júnior, A.A. da (2021). Estudo sobre a Dinâmica de Fluidos Computacional [Study on Computational Fluid Dynamics].
Custódio, R. dos S. (2009). Energia Eólica para Produção de Energia Elétrica [Wind Energy for Electricity Production]. 1st edn. Rio de Janeiro: Eletrobras, pp. 15–16. ISBN: 978-85-87083-09-8.
Demolli, H., et al. (2019). 'Wind power forecasting based on daily wind speed data using machine learning algorithms'. Energy Conversion and Management, 198, p. 111823. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2019.111823.
Domínguez, J.M., et al. (2019). 'SPH simulation of floating structures with moorings'. Coastal Engineering, 153, p. 103560. ISSN: 0378-3839. Available at: https://doi.org/10.1016/j.coastaleng.2019.103560.
Donthu, N., et al. (2021). 'How to conduct a bibliometric analysis: An overview and guidelines'. Journal of Business Research, 133, pp. 285–296. ISSN: 0148-2963. Available at: https://doi.org/10.1016/j.jbusres.2021.04.070.
Duan, J., et al. (2021). 'Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network'. Energy, 214, p. 118980. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2020.118980.
Eder, M.A. and Chen, X. (2020). 'FASTIGUE: A computationally efficient approach for simulating discrete fatigue crack growth in large-scale structures'. Engineering Fracture Mechanics, 233, p. 107075. ISSN: 0013-7944. Available at: https://doi.org/10.1016/j.engfracmech.2020.107075.
Ewees, A.A., et al. (2022). 'HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting'. Energy Conversion and Management, 268, p. 116022. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2022.116022.
Fang, Y., et al. (2020). 'Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion'. Energy, 192, p. 116621. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2019.116621.
Gao, X., et al. (2022) 'LiDAR-based observation and derivation of large-scale wind turbine’s wake expansion model downstream of a hill', Energy, 259, p. 125051. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2022.125051.
Guedes, V.L.S. da S. (2012). 'A Bibliometria e a Gestão da Informação e do Conhecimento Científico e Tecnológico: uma revisão da literatura' [Bibliometrics and the Management of Information and Scientific and Technological Knowledge: a literature review]. Pontodeacesso, 6(2), p. 74. ISSN: 1981-6766.
Hanifi, S., et al. (2020). 'A Critical Review of Wind Power Forecasting Methods—Past, Present and Future'. Energies, 13(15). ISSN: 1996-1073. https://doi.org/10.3390/en13153764.
Hao, Y. and Tian, C. (2019). 'A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting'. Applied Energy, 238, pp. 368–383. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2019.01.063.
He, R., et al. (2021). 'A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes'. Applied Energy, 296, p. 117059. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2021.117059.
Hijazi, A., ElCheikh, A. and Elkhoury, M. (2024). 'Numerical investigation of the use of flexible blades for vertical axis wind turbines'. Energy Conversion and Management, 299, p. 117867. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2023.117867.
Hong, Y.-Y. and Rioflorido, C.L.P. (2019). 'A hybrid deep learning-based neural network for 24-h ahead wind power forecasting'. Applied Energy, 250, pp. 530–539. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2019.05.044.
Hu, Y., et al. (2024). 'Temporal collaborative attention for wind power forecasting'. Applied Energy, 357, p. 122502. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2023.122502.
Jacondino, W.D., et al. (2021). 'Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model'. Energy, 230, p. 120841. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2021.120841.
Ju, Y., et al. (2019). 'A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting'. IEEE Access, 7, pp. 28309–28318. Available at: https://doi.org/10.1109/ACCESS.2019.2901920.
Karim, F.K., et al. (2023). 'A Novel Bio-Inspired Optimization Algorithm Design for Wind Power Engineering Applications Time-Series Forecasting'. Biomimetics, 8(3). ISSN: 2313-7673.
Kheirabadi, A.C. and Nagamune, R. (2019). 'A quantitative review of wind farm control with the objective of wind farm power maximization'. Journal of Wind Engineering and Industrial Aerodynamics, 192, pp. 45–73. ISSN: 0167-6105. Available at: https://doi.org/10.1016/j.jweia.2019.06.015.
Kim, H.-C., Kim, M.-H. and Choe, D.-E. (2019). 'Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals'. Ocean Engineering, 188, p. 106226. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2019.106226.
Kisvari, A., Lin, Z. and Liu, X. (2021). 'Wind power forecasting – A data-driven method along with gated recurrent neural network'. Renewable Energy, 163, pp. 1895–1909. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2020.10.119.
Kothe, L.B., Möller, S.V. and Petry, A.P. (2020) 'Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine', Renewable Energy, 148, pp. 627–638. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2019.10.151.
Leroy, V., et al. (2022) 'Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine', Ocean Engineering, 255, p. 111430. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2022.111430.
Li, Y., Tong, G., et al. (2023) 'Numerical study on aerodynamic performance improvement of the straight-bladed vertical axis wind turbine by using wind concentrators', Renewable Energy, 219, p. 119545. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2023.119545.
Li, Y., Yang, S., et al. (2023) 'A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines', Energy Reports, 9, pp. 4360–4379. ISSN: 2352-4847. Available at: https://doi.org/10.1016/j.egyr.2023.03.082.
Lin, Z. and Liu, X. (2020) 'Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network', Energy, 201, p. 117693. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2020.117693.
Liu, Y., et al. (2020) 'Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines', Journal of Wind Engineering and Industrial Aerodynamics, 206, p. 104263. ISSN: 0167-6105. Available at: https://doi.org/10.1016/j.jweia.2020.104263.
Lledó, Ll., et al. (2019) 'Seasonal forecasts of wind power generation', Renewable Energy, 143, pp. 91–100. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2019.04.135.
Lopez, R.A. (2012) Energia Eólica [Wind Energy]. 2nd ed. São Paulo: Artliber, pp. 115–116. ISBN: 978-85-88098-70-1.
Luo, L., et al. (2020) 'Optimal scheduling of a renewable-based microgrid considering photovoltaic system and battery energy storage under uncertainty', Journal of Energy Storage, 28, p. 101306. ISSN: 2352-152X. Available at: https://doi.org/10.1016/j.est.2020.101306.
Marinšek, A. and Bajt, G. (2020) 'Demystifying the use of ERA5-land and machine learning for wind power forecasting', IET Renewable Power Generation, 14(19), pp. 4159–4168. Available at: https://doi.org/10.1049/iet-rpg.2020.0576.
Mehrjerdi, H. and Hemmati, R. (2020) 'Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing buildings', Renewable Energy, 146, pp. 568–579. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2019.07.004.
Miele, E.S., Ludwig, N. and Corsini, A. (2023) 'Multi-Horizon Wind Power Forecasting Using Multi-Modal Spatio-Temporal Neural Networks', Energies, 16(8), p. 3522. ISSN: 1996-1073. Available at: https://doi.org/10.3390/en16083522.
Niu, Z., et al. (2020) 'Wind power forecasting using attention-based gated recurrent unit network', Energy, 196, p. 117081. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2020.117081.
Ponkumar, G., Jayaprakash, S. and Kanagarathinam, K. (2023) 'Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis', Energies, 16(14). ISSN: 1996-1073. Available at: https://doi.org/10.3390/en16145459.
Qin, Y., et al. (2019) 'Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal', Applied Energy, 236, pp. 262–272. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2018.11.063.
Rahmatian, M.A., et al. (2022) 'Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine', Energy, 245, p. 123267. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2022.123267.
Raman, R., et al. (2022) 'Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis', Energy Reports, 8, pp. 9242–9260. ISSN: 2352-4847. Available at: https://doi.org/10.1016/j.egyr.2022.07.058.
Rezaeiha, A., Montazeri, H. and Blocken, B. (2019) 'On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines', Energy, 180, pp. 838–857. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2019.05.053.
Ribeiro, M.H.D.M., et al. (2022) 'Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting', International Journal of Electrical Power & Energy Systems, 136, p. 107712. ISSN: 0142-0615. Available at: https://doi.org/10.1016/j.ijepes.2021.107712.
Robertson, A., et al. (2020) 'Total experimental uncertainty in hydrodynamic testing of a semisubmersible wind turbine, considering numerical propagation of systematic uncertainty', Ocean Engineering, 195, p. 106605. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2019.106605.
Song, D., et al. (2021) 'Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm', Energy, 221, p. 119866. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2021.119866.
Song, D.R., et al. (2019) 'Model Predictive Control Using Multi-Step Prediction Model for Electrical Yaw System of Horizontal-Axis Wind Turbines', IEEE Transactions on Sustainable Energy, 10(4), pp. 2084–2093. Available at: https://doi.org/10.1109/TSTE.2018.2878624.
Thomaz, P.G., Assad, R.S. and Moreira, L.F.P. (2011) 'Uso do Fator de impacto e do índice H para avaliar pesquisadores e publicações', Arquivos Brasileiros de Cardiologia, 96(2), pp. 90–93. ISSN: 0066-782X. Available at: https://doi.org/10.1590/S0066-782X2011000200001.
Ti, Z., Deng, X.W. and Yang, H. (2020) 'Wake modeling of wind turbines using machine learning', Applied Energy, 257, p. 114025. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2019.114025.
Tian, Z. (2020) 'Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM', Engineering Applications of Artificial Intelligence, 91, p. 103573. ISSN: 0952-1976. Available at: https://doi.org/10.1016/j.engappai.2020.103573.
Tong, G., et al. (2023) 'Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation', Energy, 265, p. 126325. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2022.126325.
Wang, H., et al. (2019) 'Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system', Applied Energy, 237, pp. 1–10. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2018.12.076.
Wang, Y., et al. (2021) 'A review of wind speed and wind power forecasting with deep neural networks', Applied Energy, 304, p. 117766. ISSN: 0306-2619. Available at: https://doi.org/10.1016/j.apenergy.2021.117766.
Yang, C., et al. (2023) 'Aerodynamic damping of a semi-submersible floating wind turbine: An analytical, numerical and experimental study', Ocean Engineering, 281, p. 114826. ISSN: 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2023.114826.
Yang, Y., et al. (2020) 'Performance evaluation of an integrated floating energy system based on coupled analysis', Energy Conversion and Management, 223, p. 113308. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2020.113308.
Yildiz, C., et al. (2021) 'An improved residual-based convolutional neural network for very short-term wind power forecasting', Energy Conversion and Management, 228, p. 113731. ISSN: 0196-8904. Available at: https://doi.org/10.1016/j.enconman.2020.113731.
Zhang, W., Lin, Z. and Liu, X. (2022) 'Short-term offshore wind power forecasting - A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM)', Renewable Energy, 185, pp. 611–628. ISSN: 0960-1481. Available at: https://doi.org/10.1016/j.renene.2021.12.100.
Zhang, Y., Li, Y. and Zhang, G. (2020) 'Short-term wind power forecasting approach based on Seq2Seq model using NWP data', Energy, 213, p. 118371. ISSN: 0360-5442. Available at: https://doi.org/10.1016/j.energy.2020.118371.
Zhu, H., et al. (2019) 'Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap', Journal of Wind Engineering and Industrial Aerodynamics, 186, pp. 17–31. ISSN: 0167-6105. Available at: https://doi.org/10.1016/j.jweia.2018.12.016.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Latin American Journal of Energy Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

