Aproveitamento do calor residual da incineração de biomassa de um sistema híbrido PTC-RSU para geração de hidrogênio e processos térmicos auxiliares
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p213-222Keywords:
deAbstract
Este trabalho apresenta uma análise teórica do aproveitamento do calor residual gerado em uma planta híbrida de incineração de resíduos sólidos urbanos (RSU) e energia termossolar concentrada (PTC). O sistema estudado opera 24/7, com um fluxo de 27,04 kg/s de RSU e produção contínua de 77 MW, sem armazenamento. A temperatura do calor residual varia entre 220°C e 788°C ao longo do dia. Avalia-se a viabilidade de produção de hidrogênio através de reforma termoquímica e SOEC durante as horas de alta temperatura e a utilização do calor residual noturno para secagem da biomassa ou processos térmicos auxiliares. O estudo considera parâmetros médios de eficiência da literatura sendo o rendimento da reforma de 35% e rendimento do SOEC de 30%. Os resultados indicam que o calor residual pode gerar entre 12 e 18 kg de H₂ por tonelada de RSU durante o dia, pelas rotas tecnológica de SOEC e de reforma termoquímica respectivamente, enquanto o calor noturno pode ser aproveitado para processos de secagem, aumentando a eficiência global do sistema e reduzindo desperdícios energéticos. O trabalho fornece uma base teórica para futuras implementações e otimizações em plantas híbridas urbanas de geração de energia.
Downloads
References
Açıkkalp, E, Şahin, B, Hepbaşlı, A and Ünal, H (2021) ‘Thermodynamic performance assessment of a municipal solid waste-fired power plant’, Journal of Cleaner Production, v. 279, p. 123512. https://doi.org/10.1016/j.jclepro.2020.123512
Ahmed, I and Gupta, AK (2010) ‘Hydrogen from biomass gasification’, International Journal of Hydrogen Energy, v. 35, n. 10, p. 4849–4860. https://doi.org/10.1016/j.ijhydene.2009.11.093
Arena, U (2012) ‘Process and technological aspects of municipal solid waste gasification. A review’, Waste Management, v. 32, n. 4, p. 625–639. https://doi.org/10.1016/j.wasman.2011.09.025
Barelli, L, Bidini, G, Gallorini, F, Tosti, S and Zuccari, F (2021) ‘Solar thermochemical reforming of biogas for hydrogen production: A thermodynamic and exergetic analysis’, Energy Conversion and Management, v. 236, p. 114060. https://doi.org/10.1016/j.enconman.2021.114060
Basile, A and Dalena, F (eds) (2019) Catalytic routes for sustainable hydrogen production. London: Elsevier.
Behar, O, Khellaf, A and Mohammedi, K (2013) ‘A review of studies on central receiver solar thermal power plants’, Renewable and Sustainable Energy Reviews, v. 23, p. 12–39. https://doi.org/10.1016/j.rser.2013.02.017
Bellan, S and Tizzoni, AC (2023) ‘Solar thermochemical hydrogen production: A review of the most promising technologies’, International Journal of Hydrogen Energy, v. 48, n. 36, p. 13425–13454. https://doi.org/10.1016/j.ijhydene.2022.12.259
Buttler, A and Spliethoff, H (2018) ‘Current status of water electrolysis for hydrogen production – A review’, Renewable and Sustainable Energy Reviews, v. 82, p. 2440–2454. https://doi.org/10.1016/j.rser.2017.09.099
Chen, C, Yin, X and Ma, L (2020) ‘Thermodynamic analysis of solar-biomass hybrid power generation systems: A review’, Energy Conversion and Management, v. 205, p. 112426. https://doi.org/10.1016/j.enconman.2020.112426
Crespi, F, Barea, M, Rovense, F, Sanchez, D and Montes, MJ (2022) ‘A review of hybrid solar-biomass power plants: Technologies, operation, and optimization’, Energy Conversion and Management, v. 257, p. 115456. https://doi.org/10.1016/j.enconman.2022.115456
Ebbesen, SD and Mogensen, MB (2022) ‘Solid oxide electrolysis cells: From fundamentals to demonstration and deployment’, Annual Review of Chemical and Biomolecular Engineering, v. 13, p. 447–470. https://doi.org/10.1146/annurev-chembioeng-092220-111155
EPE (Empresa de Pesquisa Energética) (2023) Balanço Energético Nacional 2023: Ano base 2022. Rio de Janeiro: EPE.
Ghaib, K and Ben-Fares, F-Z (2018) ‘Power-to-Gas: A technological review’, Renewable and Sustainable Energy Reviews, v. 81, p. 1069–1076. https://doi.org/10.1016/j.rser.2017.08.021
Guerra, C, Perna, A, Sglavo, VM and Di Noto, V (2023) ‘High-temperature solid oxide electrolysis cells: A comprehensive review on materials, components, and degradation phenomena’, Journal of Power Sources, v. 564, p. 232822. https://doi.org/10.1016/j.jpowsour.2023.232822
Hrabovszky, K, Sze-id, A and Horváth, A (2021) ‘Investigation of waste heat utilization for biomass drying in a waste-to-energy plant’, Journal of Cleaner Production, v. 289, p. 125134. https://doi.org/10.1016/j.jclepro.2020.125134
International Energy Agency (2024a) Renewables 2024. Paris: IEA.
International Energy Agency (2024b) Global Hydrogen Review 2024. Paris: IEA.
International Energy Agency (2023) World Energy Outlook 2023. Paris: IEA.
Kalogirou, SA (2021) ‘Hybrid renewable energy systems’ in Solar Energy Engineering: Processes and Systems. 3rd edn. Cambridge, MA: Academic Press, p. 783–832.
Khosravi, M, Mohamed, MH, Jaafar, MNM, Lazim, TM and Mohammed, MA (2020) ‘A comprehensive review on the latest advances of waste heat recovery systems in different industrial sectors’, Journal of Cleaner Production, v. 277, p. 122822. https://doi.org/10.1016/j.jclepro.2020.122822
Kumar, A, Singh, RK and Murty, YV (2017) ‘Gasification of municipal solid waste: A review on syngas composition and its applications’, Journal of the Energy Institute, v. 90, n. 4, p. 529–546. https://doi.org/10.1016/j.joei.2016.05.004
Li, J, Zhang, L, Wu, Z and Xie, Z (2020) ‘The challenges and prospects of municipal solid waste gasification in China’, Waste Management & Research, v. 38, n. 7, p. 721–733. https://doi.org/10.1177/0734242X20902888
Murer, MJ, Skřínský, J, Svoboda, K and Pohořelý, M (2019) ‘High-temperature heat recovery from flue gas of waste incineration plants’, Energy, v. 186, p. 115865. https://doi.org/10.1016/j.energy.2019.115865
Nathan, GK, Hasan, MM, Rahman, MM and Lu, C (2021) ‘Challenges and opportunities of municipal solid waste gasification for power generation’, Energy & Fuels, v. 35, n. 17, p. 13445–13459. https://doi.org/10.1021/acs.energyfuels.1c01997
Petrollese, M, Bidini, G, Fantozzi, F and Barbanera, M (2022) ‘A review of hybrid solar-biomass systems: Design, modeling and applications’, Renewable and Sustainable Energy Reviews, v. 154, p. 111818. https://doi.org/10.1016/j.rser.2021.111818
Qu, Z, Zhang, J, Wang, Y and Li, Y (2022) ‘A comprehensive review on waste heat recovery from municipal solid waste incineration’, Energy, v. 243, p. 123081. https://doi.org/10.1016/j.energy.2022.123081
Reyes, ME, Rodríguez-García, MM and Posso, F (2022) ‘Experimental analysis of a hybrid solar-biomass power plant with parabolic trough collectors’, Solar Energy, v. 231, p. 696–706. https://doi.org/10.1016/j.solener.2021.12.016
Rostrup-Nielsen, JR and Sehested, J (2021) ‘Steam reforming of hydrocarbons: Catalysis and reaction engineering’ in Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. 2nd edn. Weinheim: Wiley-VCH, p. 1–46.
Saavedra, E, Ortega, R and Orozco, R (2018) ‘Performance analysis of hybrid solar-biomass power plants: A comparative approach’, Renewable Energy, v. 122, p. 164–175. https://doi.org/10.1016/j.renene.2018.01.112
Saba, SM, Müller, M, Robinius, M and Stolten, D (2022) ‘The role of high-temperature electrolysis in the future energy system’, International Journal of Hydrogen Energy, v. 47, n. 45, p. 19447–19463. https://doi.org/10.1016/j.ijhydene.2022.04.144
Sant'Ana, BBP (2024) Estudo da viabilidade técnico-econômica preliminar de um sistema térmico híbrido PTC-RSU para a geração de energia elétrica no Estado do Espírito Santo. Master’s thesis, Universidade Federal do Espírito Santo - UFES, Vitória.
Sant’Ana, BBP and Fardin, JF (2025) ‘From Waste to Watts: Hybrid MSW-PTC Power Plants for Decarbonization and Sustainable Energy Generation’ in Proceedings of the 18th Brazilian Power Electronics Conference (COBEP 2025), Vitória.
Sarker, MR, Ash-hab, M, Islam, MS and Alam, MA (2021) ‘Waste heat recovery from industrial processes: A comprehensive review’, Energy Conversion and Management: X, v. 12, p. 100118. https://doi.org/10.1016/j.ecmx.2021.100118
Telsnig, T, Fahl, U and Rembold, F (2013) ‘Hybrid solar-biomass power plants: A review of the concept, design and technology’, Renewable and Sustainable Energy Reviews, v. 28, p. 154–165. https://doi.org/10.1016/j.rser.2013.07.042
Tian, Y, Zhao, Y, Liu, D and Yan, J (2023) ‘Performance optimization of a hybrid concentrated solar power and biomass gasification plant’, Applied Energy, v. 331, p. 120412. https://doi.org/10.1016/j.apenergy.2022.120412
Zhang, Y, Li, A, Cui, G and Zhu, X (2021) ‘A review of solid oxide electrolysis cells for hydrogen production from steam and/or carbon dioxide’, Journal of Power Sources, v. 514, p. 230589. https://doi.org/10.1016/j.jpowsour.2021.230589
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Latin American Journal of Energy Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

