Comparison of the performance of PV and PV/T systems through computational modeling applied to a commercial consumer unit
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p154-163Keywords:
Hybrid Photovoltaic/Thermal System; Photovoltaic System; Energy Efficiency; Water Heating; Computational Simulation.Abstract
This work presents a comparative case study, through computational simulations using Matlab software, between the installation of a conventional PV system and a hybrid PV/T system in a hotel located in Vila Velha–ES, where water heating for 45 suites is carried out by electric showers. The simulations considered meteorological data (solar irradiance and ambient temperature), an electrical consumption profile obtained through measurement, as well as installation constraints related to available area and shading. The results indicated that, although the PV/T system has a lower peak power and occupies a smaller area, it demonstrates superior performance when considering the total energy balance. The main advantage observed was a 12.07% reduction in total load consumption, resulting from the use of thermal energy for water heating, which reduces electrical demand. This substitution led to a decrease in grid consumption and an increase of 284.5% in the financial credit generated at the end of the simulated period.
The findings demonstrate that the PV/T system represents a more efficient solution for facilities with high water heating demand, optimizing space utilization and contributing to the reduction of electrical grid load.
Keywords: Hybrid Photovoltaic/Thermal System; Photovoltaic System; Energy Efficiency; Water Heating; Computational Simulation.
Downloads
References
Al-Waeli, AHA, Kazem, HA, Chaichan, MT and Sopian, K (2021). ‘A review of photovoltaic thermal systems: Achievements and applications’. International Journal of Energy Research, vol. 45, p. 1269–1308. doi: https://doi.org/10.1002/er.5872.
Do Nascimento, VF, Yahyaoui, I, Fiorotti, R, Amorim, AEA, Belisário, IC, Abreu, CES, Rocha, HRO and Tadeo, F (2022). ‘Dimensioning and efficiency evaluation of a hybrid photovoltaic thermal system in a tropical climate region’. Sustainable Energy, Grids and Networks, vol. 32, p. 100954. doi: https://doi.org/10.1016/j.segan.2022.100954.
DualSun (2024). ‘Spring4-425 TopCon Fin‑ned – Datasheet’. DualSun. Disponível em: https://dualsun.com/en/professionals/datasheet/spring4-425-topcon-finned/#techdata (Acesso em: 10 de julho de 2025).
Eletrobras (2019). ‘Pesquisa de posse e hábitos de uso de equipamentos elétricos na classe residencial – PPH 2019’. Eletrobras / Procel. Disponível em: https://eletrobras.com/pt/AreasdeAtuacao/BRASIL.pdf (Acesso em: 15 de agosto de 2025).
.
Emmanuel, B, Yuan, Y, Nyiranzeyimana, G and Zhou, J (2021). ‘A review on the influence of the components on the performance of PVT modules’. Solar Energy, vol. 226, pp. 365–388. doi: https://doi.org/10.1016/j.solener.2021.08.065.
EPE - Empresa de Pesquisa Energética (2023). ‘Atlas da Eficiência Energética Brasil 2023’. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/ publicacao-788/Atlas%20da%20Eficiência%20Energética%20Brasil (Acesso em: 10 de julho de 2025).
Fiorotti, R, Fardin, JF, Rocha, HRO, Rua, D and Lopes, JAP (2024). ‘Day-ahead optimal scheduling considering thermal and electrical energy management in smart homes with photovoltaic-thermal systems’. Applied Energy, vol. 374, p. 124070. doi: https://doi.org/10.1016/j.apenergy.2023.124070.
Herrando, M, Wang, K, Huang, G, Otanicar, T, Bany Mousa, O, Agathokleous, RA, Ding, Y, Kalogirou, S, Ekins-Daukes, N, Taylor, RA and Markides, CN (2023). ‘A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems’. Progress in Energy and Combustion Science, vol. 97, p. 101072. doi: https://doi.org/10.1016/j.pecs.2023.101072.
Instituto Nacional de Meteorologia – INMET (sem data). ‘Dados meteorológicos - Estação A634’. Disponível em: https://tempo.inmet.gov.br/TabelaEstacoes/A634 (Acesso em: 12 de agosto de 2025).
JA Solar (2024). ‘JAM66D45-605/630-LB: Módulo fotovoltaico - Especificações técnicas’. JA Solar Brasil. Disponível em: https://jasolarbrasil.com.br/wp-content/uploads/2024/08/JAM66D45-605-630-LB.pdf (Acesso em: 10 de julho de 2025).
Kalogirou, SA (2023). ‘Solar energy engineering: processes and systems’. 3rd ed. Elsevier.
Kazem, HA, Al-Waeli, AHA, Chaichan, MT, Sopian, K, Al Amiery, A and Wan Nor Roslam, WI, (2023). ‘Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review’. Case Studies in Thermal Engineering, 49, p.103316. doi: https://doi.org/10.1016/j.csite.2023.103316.
Nguyen-Vinh, K, Gonapaladeniya, S, Nguyen-Quang, N and Leonowicz, Z (2024). ‘A review of photovoltaic technology’. Proceedings of the 24th International Scientific Conference on Electric Power Engineering (EPE 2024), Kouty nad Desnou, Czech Republic, p. 1–6. doi: https://doi.org/10.1109/EPE61521.2024.10559575.
Samykano, M (2023). ‘Hybrid photovoltaic thermal systems: Present and future feasibilities for industrial and building applications’. Buildings, vol. 13, p. 1950. doi: https://doi.org/10.3390/buildings13081950.
Wang, C, Ji, J and Yang, H (2024). ‘Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings’. Energy, vol. 289, p. 130042. doi: https://doi.org/10.1016/j.energy.2023.130042.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Latin American Journal of Energy Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

