Adulteração de azeite de oliva e eficiência energética: inovações analíticas e perspectivas sustentáveis - uma revisão integrativa
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p164-173Palavras-chave:
azeite de oliva; adulteração; eficiência energética; sustentabilidade; métodos analíticos.Resumo
A adulteração do azeite de oliva representa um desafio crescente à autenticidade, segurança alimentar e sustentabilidade do setor. Esta revisão integrativa analisou 18 estudos publicados entre 2023 e 2025, conforme critérios PRISMA, com foco em métodos analíticos aplicados à detecção de fraudes e sua relação com a eficiência energética. Foram avaliadas técnicas ópticas, magnéticas, cromatográficas e multissensoriais, de acordo com a sensibilidade, consumo energético, geração de resíduos, automação e ciclo de vida dos equipamentos. Os métodos NIR, TD-NMR e o sistema multissensorial se destacaram como os mais eficientes do ponto de vista energético, de acordo com os parâmetros analisados, com precisão superior a 90% e limites de detecção entre 2% e 5%. Técnicas convencionais, embora precisas, exigem maior infraestrutura e demanda energética, além de gerarem resíduos químicos. A integração com inteligência artificial foi recorrente, ampliando a robustez dos modelos preditivos. Apesar dos avanços, ainda existem lacunas como a dependência de laboratórios complexos, necessidade de validação industrial e escassez de dispositivos portáteis com alta precisão. Diante dessas limitações, as perspectivas futuras apontam para o desenvolvimento de sensores miniaturizados e sistemas analíticos autônomos, capazes de realizar processamento local e viabilizar análises rápidas, precisas, eficientes e sustentáveis em diferentes contextos produtivos e regulatórios. Resumo em máximo de 1.800 caracteres. Times New Roman, tamanho 11, espaçamento simples.
Downloads
Referências
Adelantado C, Salatti-Dorado JA, Herrera C, Arce L and Cardador MJ (2024) ‘Discrimination amongst olive oil categories by means of high performance-ion mobility spectrometry: A step forward on food authentication’, Food Control, 158, http://doi.org/10.1016/j.foodcont.2023.110208.
Azcarate SM, Segura-Borrego MP, Ríos-Reina R and Callejón RM (2025) ‘1H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils’, Chemosensors, 13(5), http://doi.org/10.3390/chemosensors13050162.
Garrido-Cuevas M del M, Garrido-Varo AM, Marini F, Sánchez MT and Pérez-Marín D (2025) ‘Enhancing virgin olive oil authentication with Bayesian probabilistic models and near infrared spectroscopy’, Journal of Food Engineering, 391, http://doi.org/10.1016/j.jfoodeng.2024.112443.
Horns AL, Barmbold SM, Weidner M and Bachmann R (2025) ‘Spatially offset Raman spectroscopy (SORS) for sustainable olive oil authentication – Tackling the challenges in on-site food control’, Food Research International, 202, http://doi.org/10.1016/j.foodres.2025.115742.
Jiao Z, Song L, Zhang Y, Dai J, Liu Y, Zhang Q, Qin W and Yan J (2025) ‘A comparative study of fluorescence hyperspectral imaging and FTIR spectroscopy combined with chemometrics for the detection of extra virgin olive oil adulteration’, Journal of Food Measurement and Characterization, 19(3):1761–1776, http://doi.org/10.1007/s11694-024-03069-6.
Khtira A, Gharby S and Sakar EH (2025) ‘Physicochemical and sensory induced changes in olive oil (cv “Moroccan Picholine”) sourced from various extraction technologies and blended with refined soybean and sunflower oils. A chemometric comparative study’, Journal of Food Composition and Analysis, 145, http://doi.org/10.1016/j.jfca.2025.107755.
Klinar M, Benković M, Jurina T, Jurinjak Tušek A, Valinger D, Tarandek SM, Prskalo A, Tonković J and Gajdoš Kljusurić J (2024) ‘Fast Monitoring of Quality and Adulteration of Blended Sunflower/Olive Oils Applying Near-Infrared Spectroscopy’, Chemosensors, 12(8), http://doi.org/10.3390/chemosensors12080150.
Lozano VA, Jiménez Carvelo AM, Olivieri AC, Kucheryavskiy S V., Rodionova OY and Pomerantsev AL (2025) ‘Authentication of Argentinean extra-virgin olive oils using three-way fluorescence and two-way near-infrared data fused with multi-block DD-SIMCA’, Food Chemistry, 463, http://doi.org/10.1016/j.foodchem.2024.141127.
Lu CH, Li BQ, Jing Q, Pei D and Huang XY (2023) ‘A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine’, Food Chemistry, 420, http://doi.org/10.1016/j.foodchem.2023.136161.
Maraşlı A, Okay C, Karataş Ö, Mozzhukhin G and Rameev B (2023) ‘Comparison of homemade TD-NMR device and commercial devices for detection of oil adulteration’, European Physical Journal Plus, 138(5), http://doi.org/10.1140/epjp/s13360-023-03980-9.
Mirhoseini-Moghaddam SM, Yamaghani MR and Bakhshipour A (2023) ‘Application of Electronic Nose and Eye Systems for Detection of Adulteration in Olive Oil based on Chemometrics and Optimization Approaches’, JUCS - Journal of Universal Computer Science, 29(4):300–325, http://doi.org/10.3897/jucs.90346.
Pal P, Stephen J and Mathew J (2025) ‘Fiber Optic Device for the Detection of Adulteration of Olive Oil With Palm Oil’, Microwave and Optical Technology Letters, 67(5), http://doi.org/10.1002/mop.70210.
Pereira LH, Pereira J, Garcia JS and Trevisan MG (2023) ‘Seed oil detection in extra virgin olive oil by differential scanning calorimetry’, Journal of Thermal Analysis and Calorimetry, 148(14):6833–6843, http://doi.org/10.1007/s10973-023-12178-1.
Rabbani MG, Islam MT, Alawad MA, Misran N, Alkhrijah Y and Alenezi AM (2025) ‘Development and analysis of flexible Mn–Co ferrite material incorporating dual-Rectangular nested resonator (DRNR) for enhanced oil impurity sensing’, Journal of Science: Advanced Materials and Devices, 10(3), http://doi.org/10.1016/j.jsamd.2025.100948.
Ran D, Chang X, Wang H, Hu L, Li B, Zhang Y, Xie F, He S, Wang M and He P (2024) ‘Targeted identification of camellia oil and olive oil adulterated with sesame or rice oil based on characteristic substances by HPLC-UV’, Journal of Food Composition and Analysis, 133, http://doi.org/10.1016/j.jfca.2024.106432.
Sun X, Hu Y, Liu C, Zhang S, Yan S, Liu X and Zhao K (2024) ‘Characterizing Edible Oils by Oblique-Incidence Reflectivity Difference Combined with Machine Learning Algorithms’, Foods, 13(9), http://doi.org/10.3390/foods13091420.
Viskadourakis Z, Theodosi A, Katsara K, Sevastaki M, Fanourakis G, Tsilipakos O, Papadakis VM and Kenanakis G (2024) ‘Engraved Split-Ring Resonators as Potential Microwave Sensors for Olive Oil Quality Control’, ACS Applied Electronic Materials, 6(5):3846–3856, http://doi.org/10.1021/acsaelm.4c00430.
Zaroual H, El Hadrami EM, Farah A, Ez zoubi Y, Chénè C and Karoui R (2025) ‘Detection and quantification of extra virgin olive oil adulteration by other grades of olive oil using front-face fluorescence spectroscopy and different multivariate analysis techniques’, Food Chemistry, 479, http://doi.org/10.1016/j.foodchem.2025.143736.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Latin American Journal of Energy Research

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

