Adulteração de azeite de oliva e eficiência energética: inovações analíticas e perspectivas sustentáveis - uma revisão integrativa
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p164-173Palabras clave:
aceite de oliva; manipulación; eficiencia energética; sostenibilidad; métodos analíticos.Resumen
La adulteración del aceite de oliva representa un desafío creciente para la autenticidad, la seguridad alimentaria y la sostenibilidad del sector. Esta revisión integrativa analizó 18 estudios publicados entre 2023 y 2025, según los criterios PRISMA, centrándose en los métodos analíticos aplicados a la detección del fraude y su relación con la eficiencia energética. Se evaluaron técnicas ópticas, magnéticas, cromatográficas y multisensoriales en función de su sensibilidad, consumo energético, generación de residuos, automatización y ciclo de vida del equipo. Los métodos NIR, TD-NMR y el sistema multisensorial destacaron por su eficiencia energética, según los parámetros analizados, con una precisión superior al 90 % y límites de detección entre el 2 % y el 5 %. Las técnicas convencionales, si bien precisas, requieren mayor infraestructura y consumo energético, además de generar residuos químicos. La integración con inteligencia artificial fue recurrente, aumentando la robustez de los modelos predictivos. A pesar de los avances, aún existen deficiencias, como la dependencia de laboratorios complejos, la necesidad de validación industrial y la escasez de dispositivos portátiles de alta precisión. Dadas estas limitaciones, las perspectivas futuras apuntan al desarrollo de sensores miniaturizados y sistemas analíticos autónomos capaces de realizar procesamiento local y permitir análisis rápidos, precisos, eficientes y sostenibles en diferentes contextos productivos y regulatorios. Resumen de máximo 1800 caracteres. Times New Roman, tamaño 11, interlineado sencillo.
Descargas
Referencias
Adelantado C, Salatti-Dorado JA, Herrera C, Arce L and Cardador MJ (2024) ‘Discrimination amongst olive oil categories by means of high performance-ion mobility spectrometry: A step forward on food authentication’, Food Control, 158, http://doi.org/10.1016/j.foodcont.2023.110208.
Azcarate SM, Segura-Borrego MP, Ríos-Reina R and Callejón RM (2025) ‘1H-NMR Spectroscopy and Chemometric Fingerprinting for the Authentication of Organic Extra Virgin Olive Oils’, Chemosensors, 13(5), http://doi.org/10.3390/chemosensors13050162.
Garrido-Cuevas M del M, Garrido-Varo AM, Marini F, Sánchez MT and Pérez-Marín D (2025) ‘Enhancing virgin olive oil authentication with Bayesian probabilistic models and near infrared spectroscopy’, Journal of Food Engineering, 391, http://doi.org/10.1016/j.jfoodeng.2024.112443.
Horns AL, Barmbold SM, Weidner M and Bachmann R (2025) ‘Spatially offset Raman spectroscopy (SORS) for sustainable olive oil authentication – Tackling the challenges in on-site food control’, Food Research International, 202, http://doi.org/10.1016/j.foodres.2025.115742.
Jiao Z, Song L, Zhang Y, Dai J, Liu Y, Zhang Q, Qin W and Yan J (2025) ‘A comparative study of fluorescence hyperspectral imaging and FTIR spectroscopy combined with chemometrics for the detection of extra virgin olive oil adulteration’, Journal of Food Measurement and Characterization, 19(3):1761–1776, http://doi.org/10.1007/s11694-024-03069-6.
Khtira A, Gharby S and Sakar EH (2025) ‘Physicochemical and sensory induced changes in olive oil (cv “Moroccan Picholine”) sourced from various extraction technologies and blended with refined soybean and sunflower oils. A chemometric comparative study’, Journal of Food Composition and Analysis, 145, http://doi.org/10.1016/j.jfca.2025.107755.
Klinar M, Benković M, Jurina T, Jurinjak Tušek A, Valinger D, Tarandek SM, Prskalo A, Tonković J and Gajdoš Kljusurić J (2024) ‘Fast Monitoring of Quality and Adulteration of Blended Sunflower/Olive Oils Applying Near-Infrared Spectroscopy’, Chemosensors, 12(8), http://doi.org/10.3390/chemosensors12080150.
Lozano VA, Jiménez Carvelo AM, Olivieri AC, Kucheryavskiy S V., Rodionova OY and Pomerantsev AL (2025) ‘Authentication of Argentinean extra-virgin olive oils using three-way fluorescence and two-way near-infrared data fused with multi-block DD-SIMCA’, Food Chemistry, 463, http://doi.org/10.1016/j.foodchem.2024.141127.
Lu CH, Li BQ, Jing Q, Pei D and Huang XY (2023) ‘A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine’, Food Chemistry, 420, http://doi.org/10.1016/j.foodchem.2023.136161.
Maraşlı A, Okay C, Karataş Ö, Mozzhukhin G and Rameev B (2023) ‘Comparison of homemade TD-NMR device and commercial devices for detection of oil adulteration’, European Physical Journal Plus, 138(5), http://doi.org/10.1140/epjp/s13360-023-03980-9.
Mirhoseini-Moghaddam SM, Yamaghani MR and Bakhshipour A (2023) ‘Application of Electronic Nose and Eye Systems for Detection of Adulteration in Olive Oil based on Chemometrics and Optimization Approaches’, JUCS - Journal of Universal Computer Science, 29(4):300–325, http://doi.org/10.3897/jucs.90346.
Pal P, Stephen J and Mathew J (2025) ‘Fiber Optic Device for the Detection of Adulteration of Olive Oil With Palm Oil’, Microwave and Optical Technology Letters, 67(5), http://doi.org/10.1002/mop.70210.
Pereira LH, Pereira J, Garcia JS and Trevisan MG (2023) ‘Seed oil detection in extra virgin olive oil by differential scanning calorimetry’, Journal of Thermal Analysis and Calorimetry, 148(14):6833–6843, http://doi.org/10.1007/s10973-023-12178-1.
Rabbani MG, Islam MT, Alawad MA, Misran N, Alkhrijah Y and Alenezi AM (2025) ‘Development and analysis of flexible Mn–Co ferrite material incorporating dual-Rectangular nested resonator (DRNR) for enhanced oil impurity sensing’, Journal of Science: Advanced Materials and Devices, 10(3), http://doi.org/10.1016/j.jsamd.2025.100948.
Ran D, Chang X, Wang H, Hu L, Li B, Zhang Y, Xie F, He S, Wang M and He P (2024) ‘Targeted identification of camellia oil and olive oil adulterated with sesame or rice oil based on characteristic substances by HPLC-UV’, Journal of Food Composition and Analysis, 133, http://doi.org/10.1016/j.jfca.2024.106432.
Sun X, Hu Y, Liu C, Zhang S, Yan S, Liu X and Zhao K (2024) ‘Characterizing Edible Oils by Oblique-Incidence Reflectivity Difference Combined with Machine Learning Algorithms’, Foods, 13(9), http://doi.org/10.3390/foods13091420.
Viskadourakis Z, Theodosi A, Katsara K, Sevastaki M, Fanourakis G, Tsilipakos O, Papadakis VM and Kenanakis G (2024) ‘Engraved Split-Ring Resonators as Potential Microwave Sensors for Olive Oil Quality Control’, ACS Applied Electronic Materials, 6(5):3846–3856, http://doi.org/10.1021/acsaelm.4c00430.
Zaroual H, El Hadrami EM, Farah A, Ez zoubi Y, Chénè C and Karoui R (2025) ‘Detection and quantification of extra virgin olive oil adulteration by other grades of olive oil using front-face fluorescence spectroscopy and different multivariate analysis techniques’, Food Chemistry, 479, http://doi.org/10.1016/j.foodchem.2025.143736.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Latin American Journal of Energy Research

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

