Evaluation of energy forecasting mechanisms with renewable sources for maximizing the brazilian energy matrix using machine learning
DOI:
https://doi.org/10.21712/lajer.2024.v11.n1.p167-179Keywords:
Energy Planning, Machine Learning, Data Mining, Electric Power, Forecasting MethodsAbstract
The present study focuses on the Brazilian energy scenario and highlights the progressive increase in the use of renewable sources in the country's electricity matrix. The main objective of this study is to contribute to the search for solutions and to stimulate debates and reflections on the future actions necessary for energy planning. To achieve this, the research employs computational tools based on machine learning and data mining, using government and energy market data sources. The research methodology encompasses the use of computational tools to project the forecast of the electricity market in the country. The methodology employed includes the execution of forecasting models, highlighting the behavior of the energy market over time, using methods such as Multilayer Perceptron Neural Networks (MLP), Gaussian Process Regression (GPR), and Linear Regression to project electricity generation by source in Brazil. The results indicate a considerable growth of renewable sources in the national energy market by the year 2030, approaching the goal of the Ten-Year Energy Expansion Plan to achieve 90% renewability, covering sources such as hydroelectric, biomass, wind, and solar. The Linear Regression method achieved 86% renewability, while the GPR method reached 90%, and the MLP method reached 88%. The projection of the electricity market forecast allowed for the identification of market behavior patterns, enabling the anticipation of trends and changes in the market. These forecasts aim to provide information to support the development of actions in the energy planning process, contributing to the transition to more sustainable and renewable energy sources in Brazil.
Downloads
References
Aggarwal, CC (2018) Neural Networks and Deep Learning: A Textbook. Springer. DOI: https://doi.org/10.1007/978-3-319-94463-0
Barros, EV (2007) ‘A Matriz Energética Mundial e a Competitividade das Nações: bases de uma nova geopolítica’, Engevista, v.9, n.1, pp. 47–56. DOI: https://doi.org/10.22409/engevista.v9i1.183
Basso, L (2019) ‘Brazilian energy-related climate (in)action and the challenge of deep decarbonization’, Revista Brasileira de Política Internacional, v. 62, n. 2, FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0034-7329201900202 DOI: https://doi.org/10.1590/0034-7329201900202
Castro, R, e Lyra Filho, C (2005) ‘Um método de suporte a decisões sobre investimento e comercialização de energia elétrica no Brasil’, Sba: Controle & Automação Sociedade Brasileira de Automatica, v. 16, n. 4, pp. 478–494. DOI: https://doi.org/10.1590/S0103-17592005000400008
Gehrke, P, Goretti, AAT e Ávila, LV (2021) ‘Impactos da matriz energética no desenvolvimento sustentável do Brasil’, Revista de Administração da UFSM, v. 14, p. 1032-1049. http://dx.doi.org/10.5902/1983465964409 DOI: https://doi.org/10.5902/1983465964409
Gonzalez-Briones, A, Hernandez, G, Corchado, JM, Omatu, S, e Mohamad, MS (2019) ‘Machine learning models for electricity consumption forecasting: A review’, 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, pp. 1–6. DOI: https://doi.org/10.1109/CAIS.2019.8769508
Goodfellow, I, Bengio, Y e Courville, A (2016) Deep Learning. MIT Press.
Hyndman, RJ e Athanasopoulos, G (2018) Forecasting: Principles and Practice. OTexts.
Hyndman, RJ, Koehler, AB (2006) ‘Another look at measures of forecast accuracy’, International Journal Of Forecasting, v. 22, n. 4, p. 679-688, Elsevier BV. http://dx.doi.org/10.1016/j.ijforecast.2006.03.001 DOI: https://doi.org/10.1016/j.ijforecast.2006.03.001
IRENA (2022) ‘Panorama das Transições Energéticas Mundiais 2022’, Agência Internacional para as Energias Renováveis, Abu Dhabi.
Korzeniewicz, MBDV (2021) ‘Análise da matriz energética brasileira e a participação das energias renováveis a partir das políticas ambientais energéticas’, Dissertação de Mestrado, Programa de Pós-Graduação em Economia do Desenvolvimento, PUCRS, Porto Alegre, p. 55.
Makridakis, SG, Wheelwright, SC e Hyndman, RJ (1998) Forecasting: methods and applications. Wiley.
Montgomery, DC, Peck, EA e Vining, GG (2021) Introduction to Linear Regression Analysis. Wiley.
Moore, DS, McCabe, GP e Craig, BA (2014) Introduction to the Practice of Statistics. W. H. Freeman.
Moret, MA (2014) ‘Análise da expansão do setor elétrico brasileiro considerando os impactos socioeconômicos e ambientais’, Dissertação de Mestrado, Universidade Estadual de Campinas - UNICAMP, São Paulo.
Noguchi, A e Nobre, FS (2023) ‘Oil and Gas Companies - Are They Shifting to Renewables? A Study of Policy Mixes for Energy Transition in Brazil’, Bar - Brazilian Administration Review, v. 20, n. 1. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1807-7692bar2023220087 DOI: https://doi.org/10.1590/1807-7692bar2023220087
Oliveira, ACL, Tótola, LA, Lorentz, JF, Silva, AA; Assis, LR, Santos, VJ e Calijuri, ML (2022) ‘Spatial analysis of energy indicators and proposition of alternative generation sources for the Brazilian territory’, Journal Of Cleaner Production, v. 356, p. 131894, Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2022.131894 DOI: https://doi.org/10.1016/j.jclepro.2022.131894
Oliveira, FJA (2020) O planejamento da operação energética no sistema: conceitos, modelagem matemática, previsão de geração e carga. São Paulo: Artliber.
Pereira, TCG (2014) Planejamento Energético e as políticas públicas: Aspectos conceituais e metodológicos. Curitiba: COPEL.
Rasmussen, CE e Williams, CKI (2006) Gaussian Processes for Machine Learning. The MIT Press. DOI: https://doi.org/10.7551/mitpress/3206.001.0001
Shumway, RH e Stoffer, DS (2017) Time Series Analysis and Its Applications: with R examples. Springer. DOI: https://doi.org/10.1007/978-3-319-52452-8
Tan, PN, Steinbach, M e Kumar, V (2006) Introduction to data mining. Pearson Addison Wesley.
Ventura Filho, A (2014) ‘A Política Energética do Brasil’, Cadernos Adenauer XV, v. 3, pp. 121–143.
Witten, IH, Frank, E, Hall, MA e Pal, CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann.
Zarur, MAF (2005) ‘Modelo para Elaboração de Cenários do Setor Energético, utilizando técnicas de data mining’, Dissertação de Mestrado, Ciência em Engenharia Civil, COPPE/UFRJ, Rio de Janeiro, p. 107.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Latin American Journal of Energy Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.