Numerical modeling and experimental validation of a passive solar distillation of ethanol

Authors

DOI:

https://doi.org/10.21712/lajer.2024.v11.n2.p161-175

Keywords:

numerical simulation, mass transfer, renewable energy, sustainable processes, heat transfer

Abstract

The increasing global demand for sustainable energy solutions highlights the potential of solar energy, a clean and abundant resource, for industrial processes such as distillation. This study investigates the passive solar distillation of ethanol mixed with a small fraction of oil, utilizing a phenomenological model validated against experimental data. Solar energy was employed to heat the mixture, capitalizing on its environmental benefits and cost-effectiveness, particularly in regions with high solar irradiation. Experiments were conducted with initial ethanol volumes of 500 mL, 750 mL, and 1000 mL, with temperature and distillate mass measured throughout the distillation process. The model accurately predicted the temperatures of the basin, ethanol, and glass cover, as well as the distillate mass, with prediction errors below 6%. Results indicate that solar radiation and wind speed significantly influence thermal efficiency, which ranged from 18.9% to 26%. It was achieved an average productivity of 4500 to 6500 mL/day·m² of distillate ethanol. The model’s accurate predictions of distillate production demonstrate its potential as a valuable tool for optimizing passive solar distillation systems.

Downloads

Download data is not yet available.

Author Biographies

Isadora Barbosa Silva, Federal University of Triangulo Mineiro

Isadora Barbosa da Silva holds a degree in Chemical Engineering from the Federal University of Triângulo Mineiro (2023). She is currently working as an Industrial Trainee at Saint-Gobain Abrasives, where she started in January 2024. She has a Yellow Belt Lean Six Sigma certification. She previously worked as a Data Analyst at Bayer (2023-2024).

Erica Victor Faria, Federal University of Espirito Santo

PhD in Chemical Engineering from the Federal University of Uberlândia (2022), working in the area of particulate systems. Currently a Postdoctoral Researcher at UFES, São Mateus Campus. Holds a bachelor's degree in Chemical Engineering from the Federal University of Triângulo Mineiro (2015) and a master's degree in Chemical Engineering from the Federal University of Uberlândia (2017). Has experience in Chemical Engineering, with an emphasis on Renewable Energies, Transport Phenomena, Particulate Systems, Separation and Mixing Operations, Operations Research, Programming, Modeling and Simulation, and CFD.

Nádia Guimarães Sousa, Federal University of Triangulo Mineiro

Holds a bachelor's degree in Chemical Engineering from the Federal University of Uberlândia (2008). Master's degree in Chemical Engineering from the Federal University of Uberlândia (2010) with an emphasis on fault propagation and a PhD in Chemical Engineering from the same institution (2015) with an emphasis on fault-tolerant control by control allocation. Has experience in the areas of Modeling, Simulation, Optimization, and Control of Chemical Processes. Currently, is a professor at the Federal University of Triângulo Mineiro in the Chemical Engineering program (since 2014).

Kássia Graciele Santos, Federal University of Triangulo Mineiro

PossuShe holds a bachelor's degree (2006), a master's degree (2008), and a PhD (2011) in Chemical Engineering from the Federal University of Uberlândia - UFU. She was a postdoctoral researcher funded by the PNPD/Capes fellowship (2011 to 2013) at UFU. Currently, she is a Professor in the Chemical Engineering program at the Federal University of Triângulo Mineiro - UFTM and serves as a permanent member of the Professional Master's Program in Technological Innovation (PMPIT) and the Multicenter Graduate Program in Chemistry (PPGMQMG) of the Minas Gerais Chemistry Network. She has experience in the field of Chemical Engineering, mainly working on the following topics: development of mobile applications for engineering education, powder technology (waste drying, spouted bed, computational fluid dynamics (CFD, CFD-DEM), fertilizer granulation; granular multiphase flow), renewable energy (biomass pyrolysis and solar energy), sustainable extraction of vegetable oils, and technological innovation aimed at engineering education. She was awarded the 2012 Capes PhD Thesis Prize in the Engineering II category.

References

Al-Harahsheh, M., Abu-Arabi, M., Mousa, H. and Alzghoul, Z. (2018). Solar Desalination Using Solar Still Enhanced by External Solar Collector and PCM. Applied Thermal Engineering, 128, 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073.

Al-Hinai, H., Al-Nassri, M.S. and Jubran, B.A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43, 1639–1650. https://doi.org/10.1016/S0196-8904(01)00120-0.

Alswat, M. (2022). Mathematical Modelling and Experimental Study of an Enhanced Double-Slope Glass Solar Still. European Journal of Engineering and Technology Research, 7(6). http://dx.doi.org/10.24018/ejeng.2022.7.6.2909.

Altarawneh, I., Rawadieh, S., Batiha, M., Al-Makhadmeh, L., Alrowwad, S. and Tarawneh, M. (2017). Experimental and numerical performance analysis and optimization of single slope, double slope and pyramidal shaped solar stills. Desalination, 423, 124–134. https://doi.org/10.1016/j.desal.2017.09.023.

Badran, O.O. (2007). Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination, 209(1-3), 136-143. https://doi.org/10.1016/j.desal.2007.04.022.

Bezerra, M.A.S. (2004). Desenvolvimento de Um Destilador Solar Para Tratamento de Águas de Produção de Petróleo Com Vistas a Sua Utilização Na Agricultura e Geração de Vapor (in Portuguese). Mestrado em Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN.

Cabral, I.S. (2013). Energia solar – análise comparativa entre Brasil e Alemanha (in Portuguese). IV Congresso Brasileiro de Gestão Ambiental. Salvador, BA: Instituto Brasileiro de Ensino e Aperfeiçoamento em Saúde (IBEAS).

Duffie, J.A. and Beckman, W.A. (1991). Solar Engineering of Thermal Process (2nd ed.). New York: John Wiley & Sons.

Dunkle, R.V. (1961). Solar Water Distillation, the Roof Type Solar Still and Multiple Effect Diffusion Still. Developments in Heat Transfer, ASME, Proceedings of the International Heat Transfer, Part V, University of Colorado, Vol. 895.

Elkader, M.A. (1998). An Investigation of the Parameters Involved in Simple Solar Still with Inclined Yute. Renewable Energy, 14(1-4), 333-338. https://doi.org/10.1016/S0960-1481(98)00086-X.

Faria, E.V. (2015). Simulação e análise de sistemas de destilação solar passiva (in Portuguese). Trabalho de conclusão de curso em Engenharia Química, Universidade Federal do Triângulo Mineiro, Uberaba, MG.

Freire de Sá, L. (2008). Evaporação Natural do Lixiviado do Aterro da Muribeca Através de Um Destilador Solar. Mestrado em Engenharia Civil, Universidade Federal de Pernambuco, Pernambuco, PE.

Gnanadason, M.K., Kumar, P.S., Gopal, S., & Daniel, J.E.S. (2011). Design and Performance Analysis of a Modified Vacuum Single Basin Solar Still. Smart Grid and Renewable Energy, 2, 388-395. https://doi.org/10.4236/sgre.2011.24044.

GOV. (2021). Matriz energética. Energia renovável chega a quase 50% da matriz elétrica brasileira (in Portuguese). [Online] Available at: https://gov.br [accessed 21 October 2022].

Incropera, F.P., Bergman, T.L. and DeWitt, D.P. (2008). Fundamentos de Transferência de Calor e de Massa (6th ed.). Rio de Janeiro: LTC.

Jorge, B. (2011). Simulação de processos de destilação solar de água salgada (in Portuguese). Mestrado em Engenharia Mecânica, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa.

Luna, F.M. (2016). Desenvolvimento e testes de um dessalinizador solar com pré-aquecimento de água (in Portuguese). Mestrado em Energias Renováveis, Universidade Federal da Paraíba, João Pessoa.

Maddah, H.A. (2019). Modeling and Designing of a Novel Lab-scale Passive Solar Still. Journal of Engineering and Technological Sciences, 51(3), 303-322. http://dx.doi.org/10.5614/j.eng.technol.sci.2019.51.3.1.

Maluf, A.P. (2005). Destiladores solares no Brasil (in Portuguese). Dissertação de Especialização em Fontes Alternativas de Energia, Universidade Federal de Lavras, Lavras, MG.

Mohsenzadeh, M., Aye, L. and Christopher, P. (2022). Development and validation of transient model for a passive solar still considering the aspect ratio of the evaporation chamber. Solar Energy, 244(15), 434-447. http://dx.doi.org/10.1016/j.solener.2022.08.059.

Moura, A.F. (2019). Modelagem e simulação numérica de um destilador solar passivo (in Portuguese). Mestrado em Engenharia Química, Universidade Federal de Viçosa, Viçosa, MG.

Panchal, H.N. and Shah, P.K. (2011). Effect of Varying Glass Cover Thickness on Performance of Solar Still in Winter Climate Conditions. International Journal of Renewable Energy Research, 1(4), 212-223. https://doi.org/10.20508/ijrer.v1i4.65.g58.

Raj, S.V. and Manokar, A.M. (2017). Design and Analysis of Solar Still. Materials Today: Proceedings, 4(8), 9179–9185. https://doi.org/10.1016/j.matpr.2017.07.275.

Silva, L., Ribeiro, M.B.M., Oliveira, A.D., Silva, C.S., Faria, E.V., & Santos, K.G. (2019). Destilação solar do solvente etanol proveniente da extração de óleo de coco (in Portuguese). Brazilian Journal of Development, 5, 28964-28982. https://doi.org/10.34117/bjdv5n12-066.

Singh, G., Kumar, S. and Tiwari, G.N. (2011). Design, Fabrication and Performance Evaluation of a Hybrid Photovoltaic Thermal (PVT) Double Slope Active Solar Still. Desalination, 277(1-3), 399–406. https://doi.org/10.1016/j.desal.2011.04.064.

Singh, G., Singh, P.K., Saxena, A., Kumar, N. and Singh, D.B. (2024). Investigation of Conical Passive Solar Still by Incorporating Energy Metrics, Efficiency, and Sensitivity Analyses for Sustainable Solar Distillation. Journal of Cleaner Production, 434, 139949. https://doi.org/10.1016/j.jclepro.2023.139949.

Soares, C. (2004). Tratamento de água unifamiliar através da destilação solar natural utilizando água salgada, salobra e doce contaminada (in Portuguese). Mestrado em Engenharia Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC.

Spirandeli, A.B.L., Prado, G.O. and Sousa, N.G. (2017). Desenvolvimento de um destilador solar tipo escada e análise de desempenho em relação a um destilador solar com cobertura piramidal (in Portuguese). Congresso Brasileiro de Engenharia Química em Iniciação Científica, UFSCar, São Carlos, SP.

Tanaka, H. (2009). Experimental Study of a Basin Type Solar Still with Internal and External Reflectors in Winter. Desalination, 249(1), 130–134. https://doi.org/10.1016/j.desal.2009.02.057.

Tayeb, A.M. (1992). Performance Study of Some Designs of Solar Stills. Energy Conversion and Management, 33(9), 889–898. https://doi.org/10.1016/0196-8904(92)90018-R.

Trieb, F. (2007). Concentrating Solar Power for Seawater Desalination. Stuttgart, BW, Germany.

Vasconcelos, A.B. (2015). Utilização de um destilador solar convencional para o tratamento de efluente de uma agroindústria (in Portuguese). Trabalho de conclusão de curso em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Madianeira, PR.

Villalva, M.G. and Gazoli, J.R. (2012). Energia Solar Fotovoltaica: Conceitos e Aplicações (in Portuguese). São Paulo: Ed. Eletrônica.

Vorayos, N. and Kiatsiriroat, T. (2006). Performance Analysis of Solar Ethanol Distillation. Renewable Energy, 31, 2543–2554. https://doi.org/10.1016/j.renene.2006.01.016.

Downloads

Published

26-12-2024

How to Cite

Silva, I. B., Faria, E. V., Sousa, N. G., & Santos, K. G. (2024). Numerical modeling and experimental validation of a passive solar distillation of ethanol . Latin American Journal of Energy Research, 11(2), 161–175. https://doi.org/10.21712/lajer.2024.v11.n2.p161-175

Issue

Section

Energias de Baixo Carbono