Proposta de adaptação e conceituação dos 40 princípios inventivos triz considerando a utilizando de manufatura aditiva e design para manufatura aditiva
DOI:
https://doi.org/10.47456/bjpe.v10i4.45447Palavras-chave:
Teoria da Resolução de Problemas Inventivo, Design para Manufatura Aditiva, Desenvolvimento de novos produtosResumo
Entre as metodologias para a criação de conceitos para o desenvolvimento de novos produtos, a metodologia TRIZ (Teoria da Resolução de Problemas Inventivos) é um catalisador eficiente para a geração de ideias na concepção do produto. Tais soluções auxiliam na resolução de conflitos técnicos durante a etapa de conceituação de um novo produto ou componente. Para que as soluções propostas por essa metodologia sejam coerentes com o contexto dos conflitos de engenharia, é necessário, em casos específicos, fabricar dispositivos com geometria complexa e/ou customizada. Processos de fabricação convencionais podem apresentar limitações substanciais na manufatura desses dispositivos. Assim, para mitigar essa limitação, este artigo propõe a associação entre a metodologia TRIZ, a Manufatura Aditiva (MA) e o Design para Manufatura Aditiva (DfAM). Como resultado, este trabalho apresenta uma proposta de novos termos adaptados aos 40 princípios inventivos clássicos da metodologia TRIZ, considerando a ótica MA e DfAM, bem como suas possibilidades e limitações. Foram definidas aplicações diretas dos novos termos adaptados de acordo com a realidade observada no contexto de MA e DfAM.
Downloads
Referências
Ghim, M.-S., Kim, H.-W., & Cho, Y.-S. (2023). Enhancement fidelity of Kagome scaffold for bone regeneration by design for additive manufacturing. Materials & Design, 225, 111608. https://doi.org/10.1016/j.matdes.2023.111608
Abdelall, E. S., Frank, M. C., & Stone, R. T. (2018). A study of design fixation related to additive manufacturing. Journal of Mechanical Design, 140(4), 041702. https://doi.org/10.1115/1.4039007
Abdul Wahit, M. A., Ahmad, S. A., Marhaban, M. H., Wada, C., & Izhar, L. I. (2020). 3D printed robot hand structure using four-bar linkage mechanism for prosthetic application. Sensors, 20(15), 4174. https://doi.org/10.3390/s20154174
Ahmad, A., Abbas, A., Hussain, G., Al-Abbasi, O., Alkahtani, M., & Altaf, K. (2023). Performance evaluation of 3D printed polymer heat exchangers: Influence of printing temperature, printing speed and wall thickness with consideration of surface roughness. The International Journal of Advanced Manufacturing Technology, 128, 1-21. https://doi.org/10.1007/s00170-023-12079-5
Aldawood, F. (2023). A comprehensive review of 4D printing: State of the arts, opportunities, and challenges. Actuators, 12, 101. https://doi.org/10.3390/act12030101
Alfaify, A., Saleh, M., Abdullah, F. M., & Al-Ahmari, A. M. (2020). Design for additive manufacturing: A systematic review. Sustainability, 12(19), 7936. https://doi.org/10.3390/su12197936
Almutairi, M., Aria, A., Thakur, V., & Khan, M. (2020). Self-healing mechanisms for 3D-printed polymeric structures: From lab to reality. Polymers, 12. https://doi.org/10.3390/polym12071534
Altshuller, G. S., Shulyak, L., & Rodman, S. (1997). 40 principles: TRIZ keys to technical innovation. Technical Innovation Center, INC.
Bairapudi, A., Sastry, C. C., & Verma, C. (2022). Experimental analysis of 3D printed pallet model through fused deposition modeling. Surface Review and Letters, 29(05), 2250065. https://doi.org/10.1142/S0218625X22500653
Arshad, A., Nazir, A., & Jeng, J.-Y. (2022). Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology. The International Journal of Advanced Manufacturing Technology, 118, 1-12. https://doi.org/10.1007/s00170-021-07756-2
Aziz, R., Ul Haq, M. I., & Raina, A. (2020). Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polymer Testing, 85, 106434. https://doi.org/10.1016/j.polymertesting.2020.106434
Baxter, M. (2000). Projeto de produto: Guia prático para design de novos produtos. Edgar Blücher.
Ben-Shabat, Y. (2015). Design of porous micro-structures using curvature analysis for additive-manufacturing. Procedia CIRP, 36. https://doi.org/10.1016/j.procir.2015.01.057
Boolos, M., Corbin, S., Herrmann, A., & Regez, B. (2022). 3D printed orthotic leg brace with movement assist. Annals of 3D Printed Medicine, 7, 100062. https://doi.org/10.1016/j.stlm.2022.100062
Briard, T., Segonds, F., & Zamariola, N. (2020). G-DfAM: A methodological proposal of generative design for additive manufacturing in the automotive industry. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-020-00669-6
Castro, J., Carneiro, E., Marques, S., Figueiredo, B., Pontes, A., Sampaio, Á., Carvalho, I., Henriques, M., & Cruz, P. (2020). Surface functionalization of 3D printed structures: Aesthetic and antibiofouling properties. Surface and Coatings Technology, 386, 125464. https://doi.org/10.1016/j.surfcoat.2020.125464
Chantzis, D., Liu, X., Politis, D. J., Shi, Z., & Wang, L. (2020). Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions. Additive Manufacturing, 37, 101720. https://doi.org/10.1016/j.addma.2020.101720
Chergui, A., Hadj-Hamou, K., & Vignat, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, https://doi.org/10.1016/j.cie.2018.09.048
Cong, H. & Tong, L. H. (2008). Grouping of TRIZ inventive principles to facilitate automatic patent classification. Expert Systems with Applications, 34(1), 788–795. https://doi.org/10.1016/j.eswa.2006.10.015
Conklin, K., Poldon, B., & Kim, A. (2020). Consolidation of an avionics pedestal by topology optimization-based DfAM (design for additive manufacturing). In Proceedings of the Canadian Aeronautics and Space Institute.
Cuellar, J. S., Smit, G., Zadpoor, A., & Breedveld, P. (2018). Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 095441191879473. https://doi.org/10.1177/0954411918794734
Deng, H., & To, A. C. (2021). Reverse shape compensation via a gradient-based moving particle optimization method. Computer Methods in Applied Mechanics and Engineering, 377, 113658. https://doi.org/10.1016/j.cma.2020.113658
Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446. https://doi.org/10.1016/j.addma.2020.101446
Djokikj, J., & Kandikjan, T. (2021). DfAM: Development of design rules for FFF. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.
Dogea, R., Yan, X. T., & Millar, R. (2021). A smart wing rib structure suitable for design for additive manufacturing (DfAM) process. Journal of Material Sciences & Manufacturing Research, 2(2), 1-21. https://doi.org/10.47363/JMSMR/2021(2)122
Domb, E., & Rantanen, K. (2010). TRIZ Simplificado: Nuevas aplicaciones de resolución de problemas para ingeniería y fabricación. TORCULO EDICIONES, S.L.
Du Plessis, A., Broeckhoven, C., Yadroitsava, I., Yadroitsev, I., Hands, C. H., Kunju, R., & Bhate, D. (2019). Beautiful and functional: A review of biomimetic design in additive manufacturing. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.03.033
Ehlers, T., Tatzko, S., Wallaschek, J., & Lachmayer, R. (2021). Design of particle dampers for additive manufacturing. Additive Manufacturing, 38, 101752. https://doi.org/10.1016/j.addma.2020.101752
Elliott, O., Gray, S., McClay, M., Nassief, B., Nunnelley, A., Vogt, E., Ekong, J., Kardel, K., Khoshkhoo, A., Proano, G., & Blersch, D. (2017). Design and manufacturing of high surface area 3D-printed media for moving bed bioreactors for wastewater treatment. Journal of Contemporary Water Research & Education, 160, 144-156. https://doi.org/10.1111/j.1936-704X.2017.03246.x
Farber, E., Zhu, J.-N., Popovich, A., & Popovich, V. (2020). A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.01.563
Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Printing and Additive Manufacturing, 3(3), 183-192. https://doi.org/10.1089/3dp.2015.0036
Forés Garriga, A., Pérez, M., Gómez-Gras, G., & Reyes, G. (2020). Role of infill parameters on the mechanical performance and weight reduction of PEI Ultem processed by FFF. Materials & Design, 193. https://doi.org/10.1016/j.matdes.2020.108810
Gazem, N., & Rahman, A. A. (2014). Interpretation of TRIZ principles in a service related context. Asian Social Science, 10(13). https://doi.org/10.5539/ass.v10n13p108
Ghuge, S., Dohale, V., & Akarte, M. (2022). Spare part segmentation for additive manufacturing – A framework. Computers & Industrial Engineering, 169, 108277. https://doi.org/10.1016/j.cie.2022.108277
Gibson, I., Rosen, D. W., Stucker, B., & Khorasani, M. (2014). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer.
Goh, G. L., Zhang, H., Chong, T. H., & Yeong, W. Y. (2021). 3D printing of multilayered and multimaterial electronics: A review. Advanced Electronic Materials, 2100445. https://doi.org/10.1002/aelm.202100445
Goyanes, A., Det-Amornrat, U., Wang, J., Basit, A. W., & Gaisford, S. (2016). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 234, 41-48. https://doi.org/10.1016/j.jconrel.2016.05.034
Griffin, A., Price, R. L., & Vojak, B. A. (2009). Voices from the field: How exceptional electronic industrial innovators innovate. Journal of Product Innovation Management, 26(2), 222-240. https://doi.org/10.1111/j.1540-5885.2009.00348.x
Gross, J., Park, K., & Kremer, G. E. O. (2018). Design for additive manufacturing inspired by TRIZ. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2018-85864
Groth, J.-H., Magnini, M., Tuck, C., & Clare, A. (2022). Stochastic design for additive manufacture of true biomimetic populations. Additive Manufacturing, 55, 102739. https://doi.org/10.1016/j.addma.2022.102739
Haidar Hosamo, H., & Mohsen Hosamo, H. (2022). Digital twin technology for bridge maintenance using 3D laser scanning: A review. Advances in Civil Engineering, 2022, Article ID 2194949. https://doi.org/10.1155/2022/2194949
Herzberger, J., Sirrine, J. M., Williams, C. B., & Long, T. E. (2019). Polymer design for 3D printing elastomers: Recent advances in structure, properties, and printing. Progress in Polymer Science, 101144. https://doi.org/10.1016/j.progpolymsci.2019.1
Holmer, L., Othman, A., Luhrs, A., & von See, C. (2019). Comparison of the shear bond strength of 3D printed temporary bridges materials, on different types of resin cements and surface treatment. Journal of Clinical and Experimental Dentistry. https://doi.org/10.4317/jced.55617
Hon, K. K. B. (2007). Digital additive manufacturing: From rapid prototyping to rapid manufacturing. In Handbook of Manufacturing Engineering and Technology, 1-76. https://doi.org/10.1007/978-1-84628-988-0_76
Husain, M., Singh, R., & Pabla, B. S. (2023). A review on 3D printing of partially absorbable implants. Journal of The Institution of Engineers (India): Series C, 104(4), 1113-1132. https://doi.org/10.1007/s40032-023-00980-7
Jakus, A. E., Geisendorfer, N. R., Lewis, P. L., & Shah, R. N. (2018). 3D-printing porosity: A new approach to creating elevated porosity materials and structures. Acta Biomaterialia, 72, 94-109. https://doi.org/10.1016/j.actbio.2018.03.039
Jasiński, K., Murawski, L., Kluczyk, M., Muc, A., Szeleziński, A., Muchowski, T., & Chodnicki, M. (2023). Selected aspects of 3D printing for emergency replacement of structural elements. Advances in Science and Technology Research Journal, 17(1), 274-289. https://doi.org/10.12913/22998624/158486
Jiang, H., Ziegler, H., Zhang, Z., Meng, H., Chronopoulos, D., & Chen, Y. (2020). Mechanical properties of 3D printed architected polymer foams under large deformation. Materials & Design, 194, 108946. https://doi.org/10.1016/j.matdes.2020.108946
Jong-Ho, S., Jang, D., & Joo, J. (2011). A decision support method for conceptual design considering product lifecycle factors and resource constraints. The International Journal of Advanced Manufacturing Technology, 52(9-12), 865-886. https://doi.org/10.1007/s00170-010-2751-3
Kamps, T., Gralow, M., Schlick, G., & Wartzack, S. (2017). Systematic biomimetic part design for additive manufacturing. Procedia CIRP, 65, 259-266. https://doi.org/10.1016/j.procir.2017.03.316
Kanyilmaz, A., Berto, F., Paoletti, I., Caringal, R. J., & Mora, S. (2020). Nature-inspired optimization of tubular joints for metal 3D printing. Structural and Multidisciplinary Optimization, 63(2), 767-787. https://doi.org/10.1007/s00158-020-02729-7
Kim, H. & Jeong, S. (2015). Case study: Hybrid model for the customized wrist orthosis using 3D printing. Journal of Mechanical Science and Technology, 29(12), 5151-5156. https://doi.org/10.1007/s12206-015-1115-9
Kim, J., Hegde, H., Kim, H.-Y., & Lee, C. (2022). Spindle vibration mitigation utilizing additively manufactured auxetic materials. Journal of Manufacturing Processes, 73, 633-641. https://doi.org/10.1016/j.jmapro.2021.11.051
Kiziroglou, M., Becker, T., Wright, S., Yeatman, E., Evans, J., & Wright, P. (2016). Thermoelectric generator design in dynamic thermoelectric energy harvesting. Journal of Physics: Conference Series, 773, 012025. https://doi.org/10.1088/1742-6596/773/1/012025
Kretzschmar, N., & Chekurov, S. (2018). The applicability of the 40 TRIZ principles in design for additive manufacturing. In Proceedings of the 29th DAAAM International Symposium on Intelligent Manufacturing and Automation, 128. https://doi.org/10.2507/29th.daaam.proceedings.128
Lang, A., Gazo, C., Segonds, F., Mantelet, F., Jean, C., Guegan, J., & Buisine, S. (2019). A proposal for a methodology of technical creativity mixing TRIZ and additive manufacturing. In Proceedings of the 30th DAAAM International Symposium on Intelligent Manufacturing and Automation, 10. https://doi.org/10.1007/978-3-030-32497-1_10
Lettori, J., Raffaeli, R., Peruzzini, M., Schmidt, J., & Pellicciari, M. (2020). Additive manufacturing adoption in product design: An overview from literature and industry. Procedia Manufacturing, 51, 655-662. https://doi.org/10.1016/j.promfg.2020.10.092
Li, S., Xin, Y., Yu, Y., & Wang, Y. (2021). Design for additive manufacturing from a force-flow perspective. Materials & Design, 204, 109664. https://doi.org/10.1016/j.matdes.2021.109664
Liang He, X. Su, H. Peng, J. I. Lipton, & J. E. Froehlich. (2022). Kinergy: Creating 3D printable motion using embedded kinetic energy. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST '22). Association for Computing Machinery. https://doi.org/10.1145/3526113.3545636
Lindgren, L.-E., & Lundbäck, A. (2018). Additive manufacturing and high-performance applications. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 214-219. https://doi.org/10.25341/D4JC76
Livotov, P. (2022). TRIZ 40 inventive principles with 160 inventive operators - an extended version. Journal of Creativity and Innovation Management, 31(2), 163-176.
Lohse, T., & Werner, L. C. (2019). Semi-flexible additive manufacturing materials for modularization purposes: A modular assembly proposal for a foam edge-based spatial framework. In Proceedings of the 37th eCAADe and 23rd SIGraDi Joint Conference, Porto, Portugal, 463-470.
Lovo, J. F. P., Camargo, I. L., Araujo, L. A. O., & Fortulan, C. A. (2019). Mechanical structural design based on additive manufacturing and internal reinforcement. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621987847. https://doi.org/10.1177/0954406219878471
Mao, X., Zhang, X., & Rizk, S. (2007). Generalized solutions for Su-Field analysis. The TRIZ Journal, August 2007.
Mazlan, S. N., Abdul Kadir, A., Deja, M., & Zieliński, D. (2021). Development of technical creativity featuring modified TRIZ-AM inventive principle to support additive manufacturing. Journal of Mechanical Design, 144, 1-47. https://doi.org/10.1115/1.4052758
Meisel, N. A., Elliott, A. M., & Williams, C. B. (2015). A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing. Journal of Intelligent Material Systems and Structures, 26(12), 1498-1512. https://doi.org/10.1177/1045389X14544144
Merklein, M., Schulte, R., & Papke, T. (2021). An innovative process combination of additive manufacturing and sheet bulk metal forming for manufacturing a functional hybrid part. Journal of Materials Processing Technology, 291, 117032. https://doi.org/10.1016/j.jmatprotec.2020.117032
Mun, J., Busse, M., Ju, J., & Thurman, J. (2015). Multilevel metal flow-fill analysis of centrifugal casting for indirect additive manufacturing of lattice structures. Volume 2A: Advanced Manufacturing. https://doi.org/10.1115/imece2015-52270
Naseer, M. U., Kallaste, A., Asad, B., Vaimann, T., & Rassõlkin, A. (2021). A review on additive manufacturing possibilities for electrical machines. Energies, 14, 1940. https://doi.org/10.3390/en14071940
Nava-Medina, I. B., Gold, K. A., Cooper, S. M., Robinson, K., Jain, A., Cheng, Z., & Gaharwar, A. K. (2021). Self-oscillating 3D printed hydrogel shapes. Advanced Materials Technologies, 2100418. https://doi.org/10.1002/admt.202100418
Nazé, T., Poutch, F., Bonnet, F., Jimenez, M., & Bourbigot, S. (2023). Impact of additive manufacturing on reaction to fire. Journal of Fire Sciences, 41(3), 53-72. https://doi.org/10.1177/07349041231158990
Nocentini, S., Martella, D., Parmeggiani, C., & Wiersma, D. (2019). 3D printed photoresponsive materials for photonics. Advanced Optical Materials, 7, 1900156. https://doi.org/10.1002/adom.201900156
Opgenoord, M. M., & Willcox, K. E. (2019). Design for additive manufacturing: Cellular structures in early-stage aerospace design. Structural and Multidisciplinary Optimization, 60, 411-428. https://doi.org/10.1007/s00158-019-02242-3
Orloff, M. A. (2017). ABC-TRIZ: Introduction to creative design thinking with modern TRIZ modeling. Springer International Publishing.
Orquéra, M., Campocasso, S., & Millet, D. (2017). Design for additive manufacturing method for a mechanical system downsizing. Procedia CIRP, 60, 223-228. https://doi.org/10.1016/j.procir.2017.02.011
Ottosson, S. (2004). Dynamic product development - DPD. Technovation, 24, 207-217. https://doi.org/10.1016/S0166-4972(02)00099-2
Pakkanen, J., Manfredi, D., Minetola, P., & Iuliano, L. (2017). About the use of recycled or biodegradable filaments for sustainability of 3D printing. Smart Innovation, Systems and Technologies, 776-785. https://doi.org/10.1007/978-3-319-57078-5_73
Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020). Complex solutions for complex problems? Exploring the role of design task choice on learning, design for additive manufacturing use, and creativity. Journal of Mechanical Design, 142(3), 1-12. https://doi.org/10.1115/1.4045649
Punpongsanon, P., Wen, X., Kim, D., & Mueller, S. (2018). ColorMod: Recoloring 3D printed objects using photochromic inks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-12. https://doi.org/10.1145/3173574.3173787
Raju, S., Pitchaimani, J., Doddamani, M., & Loganathan, Y. (2020). Acoustic behaviour of 3D printed bio-degradable micro-perforated panels with varying perforation cross-sections. Applied Acoustics, 174, 107769. https://doi.org/10.1016/j.apacoust.2020.107769
Ramírez-Elías, VContinuando com as referências formatadas de acordo com as normas APA 7ª edição.
Ramírez-Elías, V. A., Damian-Escoto, N., Choo, K., Gómez-Martínez, M. A., Balvantín-García, A., & Diosdado-De la Peña, J. A. (2022). Structural analysis of carbon fiber 3D-printed ribs for small wind turbine blades. Polymers, 14, 4925. https://doi.org/10.3390/polym14224925
Rantanen, K., & Domb, E. (2002). Simplified TRIZ: New problem-solving applications for engineers and manufacturing professionals. CRC Press. https://doi.org/10.1201/9781420000320
Reddy, K. S. N., Maranan, V., Simpson, T. W., Palmer, T., & Dickman, C. J. (2016). Application of topology optimization and design for additive manufacturing guidelines on an automotive component. Volume 2A: 42nd Design Automation Conference. https://doi.org/10.1115/detc2016-59719
Renjith, S. C., Okudan Kremer, G. E., & Park, K. (2018). A design framework for additive manufacturing through the synergistic use of axiomatic design theory and TRIZ. IISE Annual Conference & Expo 2018, 551-556.
Roach, D., Hamel, C., Dunn, C., Johnson, M., Kuang, X., & Qi, H. (2019). The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 29, 100819. https://doi.org/10.1016/j.addma.2019.100819
Rodriguez Parada, L., de la Rosa Silva, S., & Mayuet, P. (2021). Influence of 3D-printed TPU properties for the design of elastic products. Polymers, 13, 2519. https://doi.org/10.3390/polym13152519
Rodriguez-Conde, I., & Campos, C. (2020). Towards customer-centric additive manufacturing: Making human-centered 3D design tools through a handheld-based multi-touch user interface. Sensors, 20, 4255. https://doi.org/10.3390/s20154255
Rosales, S., Ferrándiz, S., Reig, M. J., & Seguí, J. (2017). Study of soluble supports generation in 3D printed parts. Procedia Manufacturing, 13, 833-839. https://doi.org/10.1016/j.promfg.2017.09.188
Rosen, D. W. (2007). Design for additive manufacturing: A method to explore unexplored regions of the design space. In Eighteenth Annual Solid Freeform Fabrication Symposium, 402-415.
Rozenfeld, H., Forcellini, F. A., Amaral, D. C., Toledo, J. C., Silva, S. L., Alliprandini, D. H., & Scalice, R. K. (2006). Gestão de desenvolvimento de produtos: Uma referência para a melhoria do processo. Saraiva.
Ryan, K., Down, M., Hurst, N., Keefe, E., Banks, C., Wilkins, T., & Carrano, A. (2022). Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience, 2. https://doi.org/10.1016/j.esci.2022.07.003
Sanei, S. H. R., & Popescu, D. (2020). 3D-printed carbon fiber reinforced polymer composites: A systematic review. Journal of Composites Science, 4, 98. https://doi.org/10.3390/jcs4030098
Sinha, A., Swain, B., Behera, A., Mallick, P., Samal, S., H. M., Vishwanatha, & Behera, A. (2022). A review on the processing of aero-turbine blades using 3D print techniques. Journal of Manufacturing and Materials Processing, 6, 16. https://doi.org/10.3390/jmmp6010016
Sokovic, M., Kopac, J., & Pusavec, F. (2005). Use of 3D-scanning and reverse engineering by manufacturing of complex shapes. Strojniški Vestnik - Journal of Mechanical Engineering, 51, 179-190.
Souchkov, V. (2016). A glossary of essential TRIZ terms. TRIZ Journal. https://doi.org/10.1007/978-3-319-31782-3_17
Spallek, J.,& Krause, D. (2016). Process types of customisation and personalisation in design for additive manufacturing applied to vascular models. Procedia CIRP, 50, 281-286. https://doi.org/10.1016/j.procir.2016.05.022
Srinivas, G., Kurkal, R., & Shenoy, S. (2018). Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications. IOP Conference Series: Materials Science and Engineering, 314, 012012. https://doi.org/10.1088/1757-899X/314/1/012012
Stavropoulos, P., Bikas, H., Avram, O., Valente, A., & Chryssolouris, G. (2020). Hybrid subtractive–additive manufacturing processes for high value-added metal components. The International Journal of Advanced Manufacturing Technology, 111(3-4), 645-655. https://doi.org/10.1007/s00170-020-06099-8
Takagishi, K., & Umezu, S. (2017). Development of the improving process for the 3D printed structure. Scientific Reports, 7, 39852. https://doi.org/10.1038/srep39852
Tawk, C. & Alici, G. (2021). A review of 3D-printable soft pneumatic actuators and sensors: Research challenges and opportunities. Advanced Intelligent Systems, 3(6), 2000223. https://doi.org/10.1002/aisy.202000223
Tekes, A. (2020). 3D printed torsional mechanism demonstrating fundamentals of free vibrations. Canadian Journal of Physics, 99. https://doi.org/10.1139/cjp-2019-0170
Van Rompay, T. J. L., Kramer, L.-M., & Saakes, D. (2018). The sweetest punch: Effects of 3D-printed surface textures and graphic design on ice-cream evaluation. Food Quality and Preference, 68, 198-204. https://doi.org/10.1016/j.foodqual.2018.02.01
Voet, V. S. D., Guit, J., & Loos, K. (2020). Sustainable photopolymers in 3D printing: A review on biobased, biodegradable, and recyclable alternatives. Macromolecular Rapid Communications, 2000475. https://doi.org/10.1002/marc.202000475
Wang, R., Shang, J., Li, X., Luo, Z., & Wu, W. (2018). Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Scientific Reports, 8, 27963. https://doi.org/10.1038/s41598-018-27963-4
Wilts, E. & Long, T. (2020). Sustainable additive manufacturing: Predicting binder jettability of water‐soluble, biodegradable, and recyclable polymers. Polymer International, 70. https://doi.org/10.1002/pi.6108
Wong, V. W. H., Ferguson, M., Law, K. H., Lee, Y. T., & Witherell, P. (2021). Segmentation of additive manufacturing defects using U-Net. ASME. J. Comput. Inf. Sci. Eng, 22(3), 031005. https://doi.org/10.1115/1.4053078
Yang, Y., Chen, Y., Li, Y., & Chen, M. (2016). 3D printing of variable stiffness hyper-redundant robotic arm. 2016 IEEE International Conference on Robotics and Automation (ICRA), 3871-3877. https://doi.org/10.1109/ICRA.2016.7487575
Yu, P., Lu, J., Luo, Q., Li, G., & Yin, X. (2022). Optimization design of aerostatic bearings with square micro-hole arrayed restrictor for the improvement of stability: Theoretical predictions and experimental measurements. Lubricants, 10, 295. https://doi.org/10.3390/lubricants10110295
Zaldivar, R., Witkin, D., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. (2016). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Additive Manufacturing, 13, 96-104. https://doi.org/10.101Continuando com as referências formatadas de acordo com as normas APA 7ª edição:
Zaldivar, R., Witkin, D., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. (2016). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Additive Manufacturing, 13, 96-104. https://doi.org/10.1016/j.addma.2016.11.007
Zeng, Y.-S., Hsueh, M.-H., Lai, C.-J., Hsiao, T.-C., Pan, C.-Y., Huang, W.-C., Chang, C.-H., & Wang, S.-H. (2022). An investigation on the hardness of polylactic acid parts fabricated via fused deposition modeling. Polymers, 14, 2789. https://doi.org/10.3390/polym14142789
Zhao, J., Zhang, M., Zhu, Y., Li, X., Wang, L., & Hu, J. (2019). A novel optimization design method of additive manufacturing oriented porous structures and experimental validation. Materials & Design, 163, 107550. https://doi.org/10.1016/j.matdes.2018.12.020
Zmarzły, P., Gogolewski, D., & Kozior, T. (2020). Design guidelines for plastic casting using 3D printing. Journal of Engineered Fibers and Fabrics, 15, 155892502091603. https://doi.org/10.1177/1558925020916037
Zolfagharian, A., Bodaghi, M., Hamzehei, R., Parr, L., Fard, M., & Rolfe, B. (2022). 3D-printed programmable mechanical metamaterials for vibration isolation and buckling control. Sustainability, 14, 6831. https://doi.org/10.3390/su14116831
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Paulo Henrique Rodrigues Guilherme Reis, Carina Santos Silveira, Fernanda Oliveira Santos Rosa, Lucas de Figueiredo Soares, Nilmar de Souza (Autor)
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.