Propuesta de adaptación y conceptualización de los 40 principios inventivos triz considerando el uso de la manufactura aditiva y el diseño para manufactura aditiva

Autores/as

  • Paulo Henrique Rodrigues Guilherme Reis Universidade Federal de Minas Gerais
  • Carina Santos Silveira Universidade Federal da Bahia, Instituto de Ciência, Tecnologia e Inovação https://orcid.org/0000-0001-5266-1204
  • Fernanda Oliveira Santos Rosa Universidade Federal da Bahia, Instituto de Ciência, Tecnologia e Inovação https://orcid.org/0009-0002-5102-2667
  • Lucas de Figueiredo Soares SENAI CIMATEC, Instituto SENAI de Inovação em Conformação e União de Materiais https://orcid.org/0000-0002-0447-724X
  • Nilmar de Souza Universidade Federal do Recôncavo da Bahia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade https://orcid.org/0000-0003-2882-1671

DOI:

https://doi.org/10.47456/bjpe.v10i4.45447

Palabras clave:

Teoría de Resolución de Problemas Inventivos, Diseño para Manufactura Aditiva, Desarrollo de nuevos productos

Resumen

Entre las metodologías para la creación de conceptos para el desarrollo de nuevos productos, la metodología TRIZ (Teoría de Resolución de Problemas Inventivos) es un catalizador eficiente para generar ideas y soluciones en la concepción del producto. Estas soluciones ayudan a resolver conflictos técnicos durante la etapa de conceptualización de un nuevo producto o componente. Para que las soluciones propuestas por esta metodología sean coherentes con el contexto de los conflictos de ingeniería, es necesario, en casos específicos, fabricar dispositivos con geometría compleja y/o personalizada. Los procesos de fabricación convencionales pueden presentar limitaciones sustanciales en la producción de estos dispositivos. Así, para mitigar esta limitación, este artículo propone la asociación entre la metodología TRIZ, la Manufactura Aditiva (MA) y el Diseño para Manufactura Aditiva (DfAM). Como resultado, este trabajo presenta una propuesta de nuevos términos adaptados a los 40 principios inventivos clásicos de la metodología TRIZ, considerando las perspectivas de MA y DfAM, así como sus posibilidades y limitaciones. Se definieron aplicaciones directas de los nuevos términos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paulo Henrique Rodrigues Guilherme Reis, Universidade Federal de Minas Gerais

Doutor em Engenharia de Produção pela Universidade Federal de Minas Gerais (2022), Mestre em Engenharia de Produção pela Universidade Federal de Minas Gerais (2017) e Graduado em Engenharia de Produção pela Universidade Federal de Ouro Preto (2014). Atualmente, é Professor Adjunto na Universidade Federal da Bahia, especializado em Projeto e Desenvolvimento do Produto. Com vasta experiência na área de Engenharia do Produto, suas principais ênfases incluem Projeto Detalhado do Produto, Desenho Técnico, Manufatura Aditiva e Engenharia Reversa

Carina Santos Silveira, Universidade Federal da Bahia, Instituto de Ciência, Tecnologia e Inovação

Doutora no Programa de Pós-graduação em Artes Visuais - UFBA, com projeto de pesquisa voltado ao design e emoção. Mestre em Engenharia Mecatrônica - UFBA, com projeto de desenvolvimento de software. Especialista em Design de Produto pelo Pósdesign - UNEB e graduação em Bacharelado Desenho Industrial pela Universidade do Estado da Bahia. Líder do grupo de pesquisa Design, Ergonomia e Emoção. Docente na Universidade Federal da Bahia. Docente permanente do Programa de Pós-graduação em Artes Visuais - UFBA. Experiência em docência no ensino superior da Universidade do Estado da Bahia e em Centros Universitários privados no Estado da Bahia e Rio de Janeiro. Consultora ENADE/INEP. Avaliadora ad hoc da Revista Extensão da UFRB. Exerceu a função de coordenadora adjunta do curso tecnológico em Design de Moda da Unijorge no período de 2008 a 2012. Atuou como professora da Pós-graduação em Design na UNEB, lecionando a disciplina de Design Estratégico, e na pós-graduação em engenharia de segurança da UCSAL, além de outros cursos e instituições. Também atuou na Associação de Ensino Pesquisa de Nível Superior de Design do Brasil - AEnD-BR no triênio 2002/2005; como vice coordenadora do Curso de Especialização Lato Sensu da Universidade Estadual da Bahia - Pósdesign.

Fernanda Oliveira Santos Rosa, Universidade Federal da Bahia, Instituto de Ciência, Tecnologia e Inovação

Graduanda em Interdisciplinar em Ciência e Tecnologia pela Universidade Federal da Bahia (UFBA), com formação técnica em Suporte e Manutenção em Informática pelo Centro Estadual de Educação Profissional em Tecnologias da Informação e Comunicação (CEEP/TIC). Tem experiência na área de Robótica, Mecatrônica e Automação, com ênfase em projetos voltados para a capacitação e empoderamento feminino nas ciências e tecnologias, destacando-se no seu projeto de idealização e fundação "ROBÔCHICAS". Atuou como bolsista e docente em robótica educacional na MTEK Robótica Educacional e desenvolveu o projeto "MEDTEC", que visa aprimorar o atendimento de saúde pública em Lauro de Freitas. Participou de diversas publicações em anais de congressos e atividades de extensão, promovendo a inclusão de mulheres nas áreas de STEM. É proficiente em metodologia científica e normas ABNT, tendo completado várias formações complementares em áreas como meio ambiente, educação financeira, empreendedorismo e relações interpessoais. Atua principalmente nos seguintes temas: mulheres na robótica, plágio, robótica, tecnologia da informação, energia e meio ambiente.

Lucas de Figueiredo Soares, SENAI CIMATEC, Instituto SENAI de Inovação em Conformação e União de Materiais

Possui graduação em Engenharia Industrial Mecânica pelo Instituto Federal da Bahia (IFBA), mestrado em Ciência e Engenharia de Materiais pela Universidade de São Paulo (USP), especialização em Gestão de Negócios pela Universidade de São Paulo (USP) e especialização em Finanças Aplicadas pela Pontifícia Universidade Católica de Minas Gerais (PUC-MG). Participou de projetos de pesquisa sobre o comportamento corrosivo de compósitos de matriz de aço inoxidável reforçados com zircônia e no desenvolvimento de pigmentos metálicos utilizando alumínio reciclável por meio de moagem de alta energia. Atualmente atua em projeto de pesquisa como doutorando na área de simulações numéricas de manufatura aditiva de metais no SENAI-Cimatec.

Nilmar de Souza, Universidade Federal do Recôncavo da Bahia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade

Bacharel em Ciências Exatas e Tecnológicas e em Engenharia Mecânica pela Universidade Federal do Recôncavo da Bahia. Mestre e doutor em Mecatrônica na Universidade Federal da Bahia. Trabalha nas áreas de desenvolvimento de produtos de Tecnologia Assistiva, Reconhecimento de padrões e Instrumentação. Participa do Grupo de Pesquisa Interdisciplinar em Tecnologia Assistiva e Acessibilidade e do Núcleo de Estudos, Pesquisa e Extensão em Tecnologia Assistiva e Acessibilidade (NETAA). Professor Adjunto da Universidade Federal do Recôncavo da Bahia atuando no Centro de Ciência e Tecnologia em Energia e Sustentabilidade.

Citas

Ghim, M.-S., Kim, H.-W., & Cho, Y.-S. (2023). Enhancement fidelity of Kagome scaffold for bone regeneration by design for additive manufacturing. Materials & Design, 225, 111608. https://doi.org/10.1016/j.matdes.2023.111608

Abdelall, E. S., Frank, M. C., & Stone, R. T. (2018). A study of design fixation related to additive manufacturing. Journal of Mechanical Design, 140(4), 041702. https://doi.org/10.1115/1.4039007

Abdul Wahit, M. A., Ahmad, S. A., Marhaban, M. H., Wada, C., & Izhar, L. I. (2020). 3D printed robot hand structure using four-bar linkage mechanism for prosthetic application. Sensors, 20(15), 4174. https://doi.org/10.3390/s20154174

Ahmad, A., Abbas, A., Hussain, G., Al-Abbasi, O., Alkahtani, M., & Altaf, K. (2023). Performance evaluation of 3D printed polymer heat exchangers: Influence of printing temperature, printing speed and wall thickness with consideration of surface roughness. The International Journal of Advanced Manufacturing Technology, 128, 1-21. https://doi.org/10.1007/s00170-023-12079-5

Aldawood, F. (2023). A comprehensive review of 4D printing: State of the arts, opportunities, and challenges. Actuators, 12, 101. https://doi.org/10.3390/act12030101

Alfaify, A., Saleh, M., Abdullah, F. M., & Al-Ahmari, A. M. (2020). Design for additive manufacturing: A systematic review. Sustainability, 12(19), 7936. https://doi.org/10.3390/su12197936

Almutairi, M., Aria, A., Thakur, V., & Khan, M. (2020). Self-healing mechanisms for 3D-printed polymeric structures: From lab to reality. Polymers, 12. https://doi.org/10.3390/polym12071534

Altshuller, G. S., Shulyak, L., & Rodman, S. (1997). 40 principles: TRIZ keys to technical innovation. Technical Innovation Center, INC.

Bairapudi, A., Sastry, C. C., & Verma, C. (2022). Experimental analysis of 3D printed pallet model through fused deposition modeling. Surface Review and Letters, 29(05), 2250065. https://doi.org/10.1142/S0218625X22500653

Arshad, A., Nazir, A., & Jeng, J.-Y. (2022). Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology. The International Journal of Advanced Manufacturing Technology, 118, 1-12. https://doi.org/10.1007/s00170-021-07756-2

Aziz, R., Ul Haq, M. I., & Raina, A. (2020). Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polymer Testing, 85, 106434. https://doi.org/10.1016/j.polymertesting.2020.106434

Baxter, M. (2000). Projeto de produto: Guia prático para design de novos produtos. Edgar Blücher.

Ben-Shabat, Y. (2015). Design of porous micro-structures using curvature analysis for additive-manufacturing. Procedia CIRP, 36. https://doi.org/10.1016/j.procir.2015.01.057

Boolos, M., Corbin, S., Herrmann, A., & Regez, B. (2022). 3D printed orthotic leg brace with movement assist. Annals of 3D Printed Medicine, 7, 100062. https://doi.org/10.1016/j.stlm.2022.100062

Briard, T., Segonds, F., & Zamariola, N. (2020). G-DfAM: A methodological proposal of generative design for additive manufacturing in the automotive industry. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-020-00669-6

Castro, J., Carneiro, E., Marques, S., Figueiredo, B., Pontes, A., Sampaio, Á., Carvalho, I., Henriques, M., & Cruz, P. (2020). Surface functionalization of 3D printed structures: Aesthetic and antibiofouling properties. Surface and Coatings Technology, 386, 125464. https://doi.org/10.1016/j.surfcoat.2020.125464

Chantzis, D., Liu, X., Politis, D. J., Shi, Z., & Wang, L. (2020). Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions. Additive Manufacturing, 37, 101720. https://doi.org/10.1016/j.addma.2020.101720

Chergui, A., Hadj-Hamou, K., & Vignat, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, https://doi.org/10.1016/j.cie.2018.09.048

Cong, H. & Tong, L. H. (2008). Grouping of TRIZ inventive principles to facilitate automatic patent classification. Expert Systems with Applications, 34(1), 788–795. https://doi.org/10.1016/j.eswa.2006.10.015

Conklin, K., Poldon, B., & Kim, A. (2020). Consolidation of an avionics pedestal by topology optimization-based DfAM (design for additive manufacturing). In Proceedings of the Canadian Aeronautics and Space Institute.

Cuellar, J. S., Smit, G., Zadpoor, A., & Breedveld, P. (2018). Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 095441191879473. https://doi.org/10.1177/0954411918794734

Deng, H., & To, A. C. (2021). Reverse shape compensation via a gradient-based moving particle optimization method. Computer Methods in Applied Mechanics and Engineering, 377, 113658. https://doi.org/10.1016/j.cma.2020.113658

Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446. https://doi.org/10.1016/j.addma.2020.101446

Djokikj, J., & Kandikjan, T. (2021). DfAM: Development of design rules for FFF. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.

Dogea, R., Yan, X. T., & Millar, R. (2021). A smart wing rib structure suitable for design for additive manufacturing (DfAM) process. Journal of Material Sciences & Manufacturing Research, 2(2), 1-21. https://doi.org/10.47363/JMSMR/2021(2)122

Domb, E., & Rantanen, K. (2010). TRIZ Simplificado: Nuevas aplicaciones de resolución de problemas para ingeniería y fabricación. TORCULO EDICIONES, S.L.

Du Plessis, A., Broeckhoven, C., Yadroitsava, I., Yadroitsev, I., Hands, C. H., Kunju, R., & Bhate, D. (2019). Beautiful and functional: A review of biomimetic design in additive manufacturing. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.03.033

Ehlers, T., Tatzko, S., Wallaschek, J., & Lachmayer, R. (2021). Design of particle dampers for additive manufacturing. Additive Manufacturing, 38, 101752. https://doi.org/10.1016/j.addma.2020.101752

Elliott, O., Gray, S., McClay, M., Nassief, B., Nunnelley, A., Vogt, E., Ekong, J., Kardel, K., Khoshkhoo, A., Proano, G., & Blersch, D. (2017). Design and manufacturing of high surface area 3D-printed media for moving bed bioreactors for wastewater treatment. Journal of Contemporary Water Research & Education, 160, 144-156. https://doi.org/10.1111/j.1936-704X.2017.03246.x

Farber, E., Zhu, J.-N., Popovich, A., & Popovich, V. (2020). A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.01.563

Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Printing and Additive Manufacturing, 3(3), 183-192. https://doi.org/10.1089/3dp.2015.0036

Forés Garriga, A., Pérez, M., Gómez-Gras, G., & Reyes, G. (2020). Role of infill parameters on the mechanical performance and weight reduction of PEI Ultem processed by FFF. Materials & Design, 193. https://doi.org/10.1016/j.matdes.2020.108810

Gazem, N., & Rahman, A. A. (2014). Interpretation of TRIZ principles in a service related context. Asian Social Science, 10(13). https://doi.org/10.5539/ass.v10n13p108

Ghuge, S., Dohale, V., & Akarte, M. (2022). Spare part segmentation for additive manufacturing – A framework. Computers & Industrial Engineering, 169, 108277. https://doi.org/10.1016/j.cie.2022.108277

Gibson, I., Rosen, D. W., Stucker, B., & Khorasani, M. (2014). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer.

Goh, G. L., Zhang, H., Chong, T. H., & Yeong, W. Y. (2021). 3D printing of multilayered and multimaterial electronics: A review. Advanced Electronic Materials, 2100445. https://doi.org/10.1002/aelm.202100445

Goyanes, A., Det-Amornrat, U., Wang, J., Basit, A. W., & Gaisford, S. (2016). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 234, 41-48. https://doi.org/10.1016/j.jconrel.2016.05.034

Griffin, A., Price, R. L., & Vojak, B. A. (2009). Voices from the field: How exceptional electronic industrial innovators innovate. Journal of Product Innovation Management, 26(2), 222-240. https://doi.org/10.1111/j.1540-5885.2009.00348.x

Gross, J., Park, K., & Kremer, G. E. O. (2018). Design for additive manufacturing inspired by TRIZ. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2018-85864

Groth, J.-H., Magnini, M., Tuck, C., & Clare, A. (2022). Stochastic design for additive manufacture of true biomimetic populations. Additive Manufacturing, 55, 102739. https://doi.org/10.1016/j.addma.2022.102739

Haidar Hosamo, H., & Mohsen Hosamo, H. (2022). Digital twin technology for bridge maintenance using 3D laser scanning: A review. Advances in Civil Engineering, 2022, Article ID 2194949. https://doi.org/10.1155/2022/2194949

Herzberger, J., Sirrine, J. M., Williams, C. B., & Long, T. E. (2019). Polymer design for 3D printing elastomers: Recent advances in structure, properties, and printing. Progress in Polymer Science, 101144. https://doi.org/10.1016/j.progpolymsci.2019.1

Holmer, L., Othman, A., Luhrs, A., & von See, C. (2019). Comparison of the shear bond strength of 3D printed temporary bridges materials, on different types of resin cements and surface treatment. Journal of Clinical and Experimental Dentistry. https://doi.org/10.4317/jced.55617

Hon, K. K. B. (2007). Digital additive manufacturing: From rapid prototyping to rapid manufacturing. In Handbook of Manufacturing Engineering and Technology, 1-76. https://doi.org/10.1007/978-1-84628-988-0_76

Husain, M., Singh, R., & Pabla, B. S. (2023). A review on 3D printing of partially absorbable implants. Journal of The Institution of Engineers (India): Series C, 104(4), 1113-1132. https://doi.org/10.1007/s40032-023-00980-7

Jakus, A. E., Geisendorfer, N. R., Lewis, P. L., & Shah, R. N. (2018). 3D-printing porosity: A new approach to creating elevated porosity materials and structures. Acta Biomaterialia, 72, 94-109. https://doi.org/10.1016/j.actbio.2018.03.039

Jasiński, K., Murawski, L., Kluczyk, M., Muc, A., Szeleziński, A., Muchowski, T., & Chodnicki, M. (2023). Selected aspects of 3D printing for emergency replacement of structural elements. Advances in Science and Technology Research Journal, 17(1), 274-289. https://doi.org/10.12913/22998624/158486

Jiang, H., Ziegler, H., Zhang, Z., Meng, H., Chronopoulos, D., & Chen, Y. (2020). Mechanical properties of 3D printed architected polymer foams under large deformation. Materials & Design, 194, 108946. https://doi.org/10.1016/j.matdes.2020.108946

Jong-Ho, S., Jang, D., & Joo, J. (2011). A decision support method for conceptual design considering product lifecycle factors and resource constraints. The International Journal of Advanced Manufacturing Technology, 52(9-12), 865-886. https://doi.org/10.1007/s00170-010-2751-3

Kamps, T., Gralow, M., Schlick, G., & Wartzack, S. (2017). Systematic biomimetic part design for additive manufacturing. Procedia CIRP, 65, 259-266. https://doi.org/10.1016/j.procir.2017.03.316

Kanyilmaz, A., Berto, F., Paoletti, I., Caringal, R. J., & Mora, S. (2020). Nature-inspired optimization of tubular joints for metal 3D printing. Structural and Multidisciplinary Optimization, 63(2), 767-787. https://doi.org/10.1007/s00158-020-02729-7

Kim, H. & Jeong, S. (2015). Case study: Hybrid model for the customized wrist orthosis using 3D printing. Journal of Mechanical Science and Technology, 29(12), 5151-5156. https://doi.org/10.1007/s12206-015-1115-9

Kim, J., Hegde, H., Kim, H.-Y., & Lee, C. (2022). Spindle vibration mitigation utilizing additively manufactured auxetic materials. Journal of Manufacturing Processes, 73, 633-641. https://doi.org/10.1016/j.jmapro.2021.11.051

Kiziroglou, M., Becker, T., Wright, S., Yeatman, E., Evans, J., & Wright, P. (2016). Thermoelectric generator design in dynamic thermoelectric energy harvesting. Journal of Physics: Conference Series, 773, 012025. https://doi.org/10.1088/1742-6596/773/1/012025

Kretzschmar, N., & Chekurov, S. (2018). The applicability of the 40 TRIZ principles in design for additive manufacturing. In Proceedings of the 29th DAAAM International Symposium on Intelligent Manufacturing and Automation, 128. https://doi.org/10.2507/29th.daaam.proceedings.128

Lang, A., Gazo, C., Segonds, F., Mantelet, F., Jean, C., Guegan, J., & Buisine, S. (2019). A proposal for a methodology of technical creativity mixing TRIZ and additive manufacturing. In Proceedings of the 30th DAAAM International Symposium on Intelligent Manufacturing and Automation, 10. https://doi.org/10.1007/978-3-030-32497-1_10

Lettori, J., Raffaeli, R., Peruzzini, M., Schmidt, J., & Pellicciari, M. (2020). Additive manufacturing adoption in product design: An overview from literature and industry. Procedia Manufacturing, 51, 655-662. https://doi.org/10.1016/j.promfg.2020.10.092

Li, S., Xin, Y., Yu, Y., & Wang, Y. (2021). Design for additive manufacturing from a force-flow perspective. Materials & Design, 204, 109664. https://doi.org/10.1016/j.matdes.2021.109664

Liang He, X. Su, H. Peng, J. I. Lipton, & J. E. Froehlich. (2022). Kinergy: Creating 3D printable motion using embedded kinetic energy. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST '22). Association for Computing Machinery. https://doi.org/10.1145/3526113.3545636

Lindgren, L.-E., & Lundbäck, A. (2018). Additive manufacturing and high-performance applications. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 214-219. https://doi.org/10.25341/D4JC76

Livotov, P. (2022). TRIZ 40 inventive principles with 160 inventive operators - an extended version. Journal of Creativity and Innovation Management, 31(2), 163-176.

Lohse, T., & Werner, L. C. (2019). Semi-flexible additive manufacturing materials for modularization purposes: A modular assembly proposal for a foam edge-based spatial framework. In Proceedings of the 37th eCAADe and 23rd SIGraDi Joint Conference, Porto, Portugal, 463-470.

Lovo, J. F. P., Camargo, I. L., Araujo, L. A. O., & Fortulan, C. A. (2019). Mechanical structural design based on additive manufacturing and internal reinforcement. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621987847. https://doi.org/10.1177/0954406219878471

Mao, X., Zhang, X., & Rizk, S. (2007). Generalized solutions for Su-Field analysis. The TRIZ Journal, August 2007.

Mazlan, S. N., Abdul Kadir, A., Deja, M., & Zieliński, D. (2021). Development of technical creativity featuring modified TRIZ-AM inventive principle to support additive manufacturing. Journal of Mechanical Design, 144, 1-47. https://doi.org/10.1115/1.4052758

Meisel, N. A., Elliott, A. M., & Williams, C. B. (2015). A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing. Journal of Intelligent Material Systems and Structures, 26(12), 1498-1512. https://doi.org/10.1177/1045389X14544144

Merklein, M., Schulte, R., & Papke, T. (2021). An innovative process combination of additive manufacturing and sheet bulk metal forming for manufacturing a functional hybrid part. Journal of Materials Processing Technology, 291, 117032. https://doi.org/10.1016/j.jmatprotec.2020.117032

Mun, J., Busse, M., Ju, J., & Thurman, J. (2015). Multilevel metal flow-fill analysis of centrifugal casting for indirect additive manufacturing of lattice structures. Volume 2A: Advanced Manufacturing. https://doi.org/10.1115/imece2015-52270

Naseer, M. U., Kallaste, A., Asad, B., Vaimann, T., & Rassõlkin, A. (2021). A review on additive manufacturing possibilities for electrical machines. Energies, 14, 1940. https://doi.org/10.3390/en14071940

Nava-Medina, I. B., Gold, K. A., Cooper, S. M., Robinson, K., Jain, A., Cheng, Z., & Gaharwar, A. K. (2021). Self-oscillating 3D printed hydrogel shapes. Advanced Materials Technologies, 2100418. https://doi.org/10.1002/admt.202100418

Nazé, T., Poutch, F., Bonnet, F., Jimenez, M., & Bourbigot, S. (2023). Impact of additive manufacturing on reaction to fire. Journal of Fire Sciences, 41(3), 53-72. https://doi.org/10.1177/07349041231158990

Nocentini, S., Martella, D., Parmeggiani, C., & Wiersma, D. (2019). 3D printed photoresponsive materials for photonics. Advanced Optical Materials, 7, 1900156. https://doi.org/10.1002/adom.201900156

Opgenoord, M. M., & Willcox, K. E. (2019). Design for additive manufacturing: Cellular structures in early-stage aerospace design. Structural and Multidisciplinary Optimization, 60, 411-428. https://doi.org/10.1007/s00158-019-02242-3

Orloff, M. A. (2017). ABC-TRIZ: Introduction to creative design thinking with modern TRIZ modeling. Springer International Publishing.

Orquéra, M., Campocasso, S., & Millet, D. (2017). Design for additive manufacturing method for a mechanical system downsizing. Procedia CIRP, 60, 223-228. https://doi.org/10.1016/j.procir.2017.02.011

Ottosson, S. (2004). Dynamic product development - DPD. Technovation, 24, 207-217. https://doi.org/10.1016/S0166-4972(02)00099-2

Pakkanen, J., Manfredi, D., Minetola, P., & Iuliano, L. (2017). About the use of recycled or biodegradable filaments for sustainability of 3D printing. Smart Innovation, Systems and Technologies, 776-785. https://doi.org/10.1007/978-3-319-57078-5_73

Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020). Complex solutions for complex problems? Exploring the role of design task choice on learning, design for additive manufacturing use, and creativity. Journal of Mechanical Design, 142(3), 1-12. https://doi.org/10.1115/1.4045649

Punpongsanon, P., Wen, X., Kim, D., & Mueller, S. (2018). ColorMod: Recoloring 3D printed objects using photochromic inks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-12. https://doi.org/10.1145/3173574.3173787

Raju, S., Pitchaimani, J., Doddamani, M., & Loganathan, Y. (2020). Acoustic behaviour of 3D printed bio-degradable micro-perforated panels with varying perforation cross-sections. Applied Acoustics, 174, 107769. https://doi.org/10.1016/j.apacoust.2020.107769

Ramírez-Elías, VContinuando com as referências formatadas de acordo com as normas APA 7ª edição.

Ramírez-Elías, V. A., Damian-Escoto, N., Choo, K., Gómez-Martínez, M. A., Balvantín-García, A., & Diosdado-De la Peña, J. A. (2022). Structural analysis of carbon fiber 3D-printed ribs for small wind turbine blades. Polymers, 14, 4925. https://doi.org/10.3390/polym14224925

Rantanen, K., & Domb, E. (2002). Simplified TRIZ: New problem-solving applications for engineers and manufacturing professionals. CRC Press. https://doi.org/10.1201/9781420000320

Reddy, K. S. N., Maranan, V., Simpson, T. W., Palmer, T., & Dickman, C. J. (2016). Application of topology optimization and design for additive manufacturing guidelines on an automotive component. Volume 2A: 42nd Design Automation Conference. https://doi.org/10.1115/detc2016-59719

Renjith, S. C., Okudan Kremer, G. E., & Park, K. (2018). A design framework for additive manufacturing through the synergistic use of axiomatic design theory and TRIZ. IISE Annual Conference & Expo 2018, 551-556.

Roach, D., Hamel, C., Dunn, C., Johnson, M., Kuang, X., & Qi, H. (2019). The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 29, 100819. https://doi.org/10.1016/j.addma.2019.100819

Rodriguez Parada, L., de la Rosa Silva, S., & Mayuet, P. (2021). Influence of 3D-printed TPU properties for the design of elastic products. Polymers, 13, 2519. https://doi.org/10.3390/polym13152519

Rodriguez-Conde, I., & Campos, C. (2020). Towards customer-centric additive manufacturing: Making human-centered 3D design tools through a handheld-based multi-touch user interface. Sensors, 20, 4255. https://doi.org/10.3390/s20154255

Rosales, S., Ferrándiz, S., Reig, M. J., & Seguí, J. (2017). Study of soluble supports generation in 3D printed parts. Procedia Manufacturing, 13, 833-839. https://doi.org/10.1016/j.promfg.2017.09.188

Rosen, D. W. (2007). Design for additive manufacturing: A method to explore unexplored regions of the design space. In Eighteenth Annual Solid Freeform Fabrication Symposium, 402-415.

Rozenfeld, H., Forcellini, F. A., Amaral, D. C., Toledo, J. C., Silva, S. L., Alliprandini, D. H., & Scalice, R. K. (2006). Gestão de desenvolvimento de produtos: Uma referência para a melhoria do processo. Saraiva.

Ryan, K., Down, M., Hurst, N., Keefe, E., Banks, C., Wilkins, T., & Carrano, A. (2022). Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience, 2. https://doi.org/10.1016/j.esci.2022.07.003

Sanei, S. H. R., & Popescu, D. (2020). 3D-printed carbon fiber reinforced polymer composites: A systematic review. Journal of Composites Science, 4, 98. https://doi.org/10.3390/jcs4030098

Sinha, A., Swain, B., Behera, A., Mallick, P., Samal, S., H. M., Vishwanatha, & Behera, A. (2022). A review on the processing of aero-turbine blades using 3D print techniques. Journal of Manufacturing and Materials Processing, 6, 16. https://doi.org/10.3390/jmmp6010016

Sokovic, M., Kopac, J., & Pusavec, F. (2005). Use of 3D-scanning and reverse engineering by manufacturing of complex shapes. Strojniški Vestnik - Journal of Mechanical Engineering, 51, 179-190.

Souchkov, V. (2016). A glossary of essential TRIZ terms. TRIZ Journal. https://doi.org/10.1007/978-3-319-31782-3_17

Spallek, J.,& Krause, D. (2016). Process types of customisation and personalisation in design for additive manufacturing applied to vascular models. Procedia CIRP, 50, 281-286. https://doi.org/10.1016/j.procir.2016.05.022

Srinivas, G., Kurkal, R., & Shenoy, S. (2018). Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications. IOP Conference Series: Materials Science and Engineering, 314, 012012. https://doi.org/10.1088/1757-899X/314/1/012012

Stavropoulos, P., Bikas, H., Avram, O., Valente, A., & Chryssolouris, G. (2020). Hybrid subtractive–additive manufacturing processes for high value-added metal components. The International Journal of Advanced Manufacturing Technology, 111(3-4), 645-655. https://doi.org/10.1007/s00170-020-06099-8

Takagishi, K., & Umezu, S. (2017). Development of the improving process for the 3D printed structure. Scientific Reports, 7, 39852. https://doi.org/10.1038/srep39852

Tawk, C. & Alici, G. (2021). A review of 3D-printable soft pneumatic actuators and sensors: Research challenges and opportunities. Advanced Intelligent Systems, 3(6), 2000223. https://doi.org/10.1002/aisy.202000223

Tekes, A. (2020). 3D printed torsional mechanism demonstrating fundamentals of free vibrations. Canadian Journal of Physics, 99. https://doi.org/10.1139/cjp-2019-0170

Van Rompay, T. J. L., Kramer, L.-M., & Saakes, D. (2018). The sweetest punch: Effects of 3D-printed surface textures and graphic design on ice-cream evaluation. Food Quality and Preference, 68, 198-204. https://doi.org/10.1016/j.foodqual.2018.02.01

Voet, V. S. D., Guit, J., & Loos, K. (2020). Sustainable photopolymers in 3D printing: A review on biobased, biodegradable, and recyclable alternatives. Macromolecular Rapid Communications, 2000475. https://doi.org/10.1002/marc.202000475

Wang, R., Shang, J., Li, X., Luo, Z., & Wu, W. (2018). Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Scientific Reports, 8, 27963. https://doi.org/10.1038/s41598-018-27963-4

Wilts, E. & Long, T. (2020). Sustainable additive manufacturing: Predicting binder jettability of water‐soluble, biodegradable, and recyclable polymers. Polymer International, 70. https://doi.org/10.1002/pi.6108

Wong, V. W. H., Ferguson, M., Law, K. H., Lee, Y. T., & Witherell, P. (2021). Segmentation of additive manufacturing defects using U-Net. ASME. J. Comput. Inf. Sci. Eng, 22(3), 031005. https://doi.org/10.1115/1.4053078

Yang, Y., Chen, Y., Li, Y., & Chen, M. (2016). 3D printing of variable stiffness hyper-redundant robotic arm. 2016 IEEE International Conference on Robotics and Automation (ICRA), 3871-3877. https://doi.org/10.1109/ICRA.2016.7487575

Yu, P., Lu, J., Luo, Q., Li, G., & Yin, X. (2022). Optimization design of aerostatic bearings with square micro-hole arrayed restrictor for the improvement of stability: Theoretical predictions and experimental measurements. Lubricants, 10, 295. https://doi.org/10.3390/lubricants10110295

Zaldivar, R., Witkin, D., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. (2016). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Additive Manufacturing, 13, 96-104. https://doi.org/10.101Continuando com as referências formatadas de acordo com as normas APA 7ª edição:

Zaldivar, R., Witkin, D., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. (2016). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-printed ULTEM® 9085 material. Additive Manufacturing, 13, 96-104. https://doi.org/10.1016/j.addma.2016.11.007

Zeng, Y.-S., Hsueh, M.-H., Lai, C.-J., Hsiao, T.-C., Pan, C.-Y., Huang, W.-C., Chang, C.-H., & Wang, S.-H. (2022). An investigation on the hardness of polylactic acid parts fabricated via fused deposition modeling. Polymers, 14, 2789. https://doi.org/10.3390/polym14142789

Zhao, J., Zhang, M., Zhu, Y., Li, X., Wang, L., & Hu, J. (2019). A novel optimization design method of additive manufacturing oriented porous structures and experimental validation. Materials & Design, 163, 107550. https://doi.org/10.1016/j.matdes.2018.12.020

Zmarzły, P., Gogolewski, D., & Kozior, T. (2020). Design guidelines for plastic casting using 3D printing. Journal of Engineered Fibers and Fabrics, 15, 155892502091603. https://doi.org/10.1177/1558925020916037

Zolfagharian, A., Bodaghi, M., Hamzehei, R., Parr, L., Fard, M., & Rolfe, B. (2022). 3D-printed programmable mechanical metamaterials for vibration isolation and buckling control. Sustainability, 14, 6831. https://doi.org/10.3390/su14116831

Publicado

2024-10-05

Cómo citar

Reis, P. H. R. G., Silveira, C. S., Rosa, F. O. S., Soares, L. de F., & Souza, N. de. (2024). Propuesta de adaptación y conceptualización de los 40 principios inventivos triz considerando el uso de la manufactura aditiva y el diseño para manufactura aditiva. Brazilian Journal of Production Engineering, 10(4), 51–67. https://doi.org/10.47456/bjpe.v10i4.45447