Drivers and enablers for the implementation of industry 4.0 technologies in performance measurement systems: a systematic review

Authors

DOI:

https://doi.org/10.47456/bjpe.v10i3.44347

Keywords:

Performance Measurement Systems, Industry 4.0 Technologies, Industry 4.0

Abstract

The ever-changing business landscape and evolving stakeholder requirements, coupled with the influx of complex real-time data, require more dynamic and resilient performance measurement systems (PMS). Industry 4.0 (I4.0) technologies offer significant potential in enhancing PMS. However, implementing these technologies into PMS is a complex process that faces various barriers. This article presents the findings of a systematic literature review (SLR) that explores the essential factors for implementing I4.0 technologies in PMS. Through examining 33 documents, the study highlights several key drivers, including the importance of continuous real-time monitoring of PMS for decision-makers, the potential for enhanced agility, and the prospects for improved productivity and efficiency. Additionally, the research identifies significant enablers, such as financial capacity for investment and the availability of a qualified workforce. Therefore, this study contributes to a better understanding of the drivers and enablers that support the adoption of I4.0 technologies in PMS.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Almir Lopes, Universidade Federal de São Carlos

Possui graduação em Engenharia Química pela Universidade Federal de São Carlos (1997), MBA em Gestão Estratégica de Empresas pelo Centro Universitário Central Paulista (2004), mestrado em Ciências pela Universidade de São Paulo (2012) e doutorado em Engenharia de Produção pela Universidade Federal de São Carlos (2023). Atualmente é servidor público na Universidade Federal de São Carlos com interesse nos seguintes temas de pesquisa: Sistema de Medição de Desempenho e Indústria 4.0.

Roberto Antonio Martins, Universidade Federal de São Carlos

Possui graduação em Engenharia de Produção-Mecânica pela Universidade de São Paulo (1990), mestrado em Engenharia (Engenharia de Produção) pela Universidade de São Paulo (1993) e doutorado em Engenharia (Engenharia de Produção) pela Universidade de São Paulo (1999). Atualmente é Professor Titular da Universidade Federal de São Carlos lotado do Departamento de Engenharia de Produção. É membro de corpo editorial de vários periódicos brasileiros, com destaque Gestão & Produção e Production. Atualmente é Editor-in-Chief da Gestão & Produção. Atua como revisor de inúmeros periódicos nacionais e internacionais bem como de congressos nacionais e internacionais. Seu interesse principal de pesquisa é os Sistemas de Medição de Desempenho. O enfoque é nos Sistemas de Medição de Desempenho para Gestão da Cadeia de Suprimentos Sustentáveis e Economia Circular, Sistemas de Medição de Desempenho para Sustentabilidade, Uso de Big Data Analytics em Sistemas de Medição de Desempenho, Digitalização do Sistemas de Medição de Desempenho (em especial na Indústria 4.0 e Agricultura 4.0).

References

Ante, G., Facchini, F., Mossa, G., & Digiesi, S. (2018). Developing a key performance indicators tree for lean and smart production systems. IFAC-PapersOnLine, 51(11), 13–18. https://doi.org/10.1016/j.ifacol.2018.08.227 DOI: https://doi.org/10.1016/j.ifacol.2018.08.227

Assandre, J., & Martins, R. (2023). Analysis of Scientific Production on the use of Big Data Analytics in Performance Measurement Systems. IEEE Latin America Transactions, 21(3), 367–380. DOI: https://doi.org/10.1109/TLA.2023.10068840

Bauters, K., Cottyn, J., Claeys, D., Slembrouck, M., Veelaert, P., & van Landeghem, H. (2018). Automated work cycle classification and performance measurement for manual work stations. Robotics and Computer-Integrated Manufacturing, 51(December 2017), 139–157. https://doi.org/10.1016/j.rcim.2017.12.001 DOI: https://doi.org/10.1016/j.rcim.2017.12.001

Bhadani, K., Asbjörnsson, G., Hulthén, E., & Evertsson, M. (2020). Development and implementation of key performance indicators for aggregate production using dynamic simulation. Minerals Engineering, 145(August 2019). https://doi.org/10.1016/j.mineng.2019.106065 DOI: https://doi.org/10.1016/j.mineng.2019.106065

Biolchini, J. A., Calmon, J., Mian, P. G., Natali, A. C. C., Conte, T. U., & Travassos, G. H. (2007). Scientific research ontology to support systematic review in software engineering. Advanced Engineering Informatics, 21(2), 133–151. https://doi.org/10.1016/j.aei.2006.11.006 DOI: https://doi.org/10.1016/j.aei.2006.11.006

Bititci, U., Garengo, P., Dörfler, V., & Nudurupati, S. (2012). Performance measurement: challenges for tomorrow. International Journal of Management Reviews, 14(3), 305–327. https://doi.org/10.1111/j.1468-2370.2011.00318.x DOI: https://doi.org/10.1111/j.1468-2370.2011.00318.x

Bourne, M., Neely, A., Mills, J., & Platts, K. (2003). Implementing performance measurement systems: a literature review. International Journal of Business Performance Management, 5(1), 1–24. https://doi.org/10.1504/IJBPM.2003.002097 DOI: https://doi.org/10.1504/IJBPM.2003.002097

Chauhan, C., & Singh, A. (2019). A review of Industry 4.0 in supply chain management studies. Journal of Manufacturing Technology Management, 31(5), 863–886. https://doi.org/10.1108/JMTM-04-2018-0105 DOI: https://doi.org/10.1108/JMTM-04-2018-0105

Choi, T., & Seo, Y. (2020). A real-time physical progress measurement method for schedule performance control using vision, an ar marker and machine learning in a ship block assembly process. Sensors (Switzerland), 20(18), 1–25. https://doi.org/10.3390/s20185386 DOI: https://doi.org/10.3390/s20185386

Conforto, E. C., Amaral, D. C., & Silva, S. L. Da. (2011). Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, 1998, 1–12.

De Mello, R. G. S., Xavier, J. E. M., & Martins, R. A. (2015). Use of big data analytics in performance measurement systems. IIE Annual Conference and Expo 2015, July, 2352–2360. https://doi.org/10.13140/RG.2.1.4071.4083

Denyer, D., & Tranfield, D. (2009). Producing a Systematic Review. In The SAGE Handbook of Organizational Research Methods (pp. 671–689). Sage Publications Ltd. https://doi.org/10.1080/03634528709378635 DOI: https://doi.org/10.1080/03634528709378635

Dev, N. K., Shankar, R., Gupta, R., & Dong, J. (2019). Multi-criteria evaluation of real-time key performance indicators of supply chain with consideration of big data architecture. Computers and Industrial Engineering, 128(April 2018), 1076–1087. https://doi.org/10.1016/j.cie.2018.04.012 DOI: https://doi.org/10.1016/j.cie.2018.04.012

Duarte, R., De Araújo Kluska, R., Deschamps, F., De Lima, E. P., & Van Aken, E. M. (2018). A framework to integrate performance measurement systems with data analytics. 39th International Annual Conference of the American Society for Engineering Management, ASEM 2018, 1–10. DOI: https://doi.org/10.12783/dtetr/icpr2017/17603

Dweekat, A., & Al-Aomar, R. (2018). An IoT-Enabled Framework for Dynamic Supply Chain Performance Management. 2018 IEEE Technology and Engineering Management Conference (TEMSCON), 1–5. https://doi.org/10.1109/TEMSCON.2018.8488417 DOI: https://doi.org/10.1109/TEMSCON.2018.8488417

El Abdellaoui, M. E. A., Grimaud, F., Gianessi, P., & Delorme, X. (2019). Integrated Decision Process to Design Manufacturing Systems towards Industry 4.0. IFAC-PapersOnLine, 52(13), 1373–1378. DOI: https://doi.org/10.1016/j.ifacol.2019.11.390

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., & Belgamo, A. (2016). Improvements in the StArt tool to better support the systematic review process. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, 1–5. https://doi.org/10.1145/2915970.2916013 DOI: https://doi.org/10.1145/2915970.2916013

Eltayeb, A., Mohamed, A., & Masrom, M. B. (2021). Drivers and Barriers to Implement Industry 4.0 in Manufacturing Sectors, Systematic Literature Review. The International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 9, 1-9.

Fast-Berglund, Å., & Romero, D. (2019). Strategies for Implementing Collaborative Robot Applications for the Operator 4.0. IFIP Advances in Information and Communication Technology, 566(November), 682–689. https://doi.org/10.1007/978-3-030-30000-5_83 DOI: https://doi.org/10.1007/978-3-030-30000-5_83

Frederico, G. F., Garza-Reyes, J. A., Anosike, A., & Kumar, V. (2019). Supply Chain 4.0: concepts, maturity and research agenda. Supply Chain Management, 25(2), 262–282. https://doi.org/10.1108/SCM-09-2018-0339 DOI: https://doi.org/10.1108/SCM-09-2018-0339

Garcia, C. A., Caiza, G., Guizado, D., Naranjo, J. E., Ortiz, A., Ayala, P., & Garcia, M. V. (2023). Visualization of Key Performance Indicators in the Production System in the Context of Industry 4.0. IFAC-PapersOnLine, 56(2), 6582–6587. https://doi.org/10.1016/j.ifacol.2023.10.310 DOI: https://doi.org/10.1016/j.ifacol.2023.10.310

Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669–686. https://doi.org/10.1108/JMTM-10-2019-0368 DOI: https://doi.org/10.1108/JMTM-10-2019-0368

Giusti, F., Bevilacqua, M., Tedeschi, S., & Emmanouilidis, C. (2018). Data analytics and production efficiency evaluation on a flexible manufacturing cell. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6. https://doi.org/10.1109/I2MTC.2018.8409677 DOI: https://doi.org/10.1109/I2MTC.2018.8409677

Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technological Forecasting and Social Change, 146(March), 119–132. https://doi.org/10.1016/j.techfore.2019.05.021 DOI: https://doi.org/10.1016/j.techfore.2019.05.021

Hwang, G., Lee, J., Park, J., & Chang, T. W. (2017). Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research, 55(9), 2590–2602. https://doi.org/10.1080/00207543.2016.1245883 DOI: https://doi.org/10.1080/00207543.2016.1245883

Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation. International Journal of Production Economics, 229(July), 107853. https://doi.org/10.1016/j.ijpe.2020.107853 DOI: https://doi.org/10.1016/j.ijpe.2020.107853

Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Ver. 2.3 EBSE Technical Report, 57.

Kennerley, M., & Neely, A. (2003). Measuring performance in a changing business environment. International Journal of Operations and Production Management, 23(2), 213–229. https://doi.org/10.1108/01443570310458465 DOI: https://doi.org/10.1108/01443570310458465

Khan, S. A., Chaabane, A., & Dweiri, F. (2020). Supply chain performance measurement systems: A qualitative review and proposed conceptual framework. International Journal of Industrial and Systems Engineering, 34(1), 43–64. https://doi.org/10.1504/IJISE.2020.104315 DOI: https://doi.org/10.1504/IJISE.2020.104315

Kibira, D., Morris, K. C., & Kumaraguru, S. (2016). Methods and tools for performance assurance of smart manufacturing systems. Journal of Research of the National Institute of Standards and Technology, 121, 282–313. https://doi.org/10.6028/jres.121.013 DOI: https://doi.org/10.6028/jres.121.013

Kloviene, L., & Uosyte, I. (2019). Development of performance measurement system in the context of industry 4.0: A case study. Engineering Economics, 30(4), 472–482. https://doi.org/10.5755/j01.ee.30.4.21728 DOI: https://doi.org/10.5755/j01.ee.30.4.21728

Konstas, K., Chountalas, P. T., Didaskalou, E. A., & Georgakellos, D. A. (2023). A Pragmatic Framework for Data-Driven Decision-Making Process in the Energy Sector: Insights from a Wind Farm Case Study. Energies, 16(17), 1–26. https://doi.org/10.3390/en16176272 DOI: https://doi.org/10.3390/en16176272

Korsen, E. B. H., & Ingvaldsen, J. A. (2021). Digitalisation and the performance measurement and management system: reinforcing empowerment. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-09-2020-0488 DOI: https://doi.org/10.1108/IJPPM-09-2020-0488

Leitao, P., Rodrigues, N., Ferreira, A., Pagani, A., Petrali, P., & Barbosa, J. (2019). A lightweight dynamic monitoring of operational indicators for a rapid strategical awareness. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 121–126. https://doi.org/10.1109/ICPHYS.2019.8780228 DOI: https://doi.org/10.1109/ICPHYS.2019.8780228

Leite, L. R. (2012). Systematic literature review on performance measurement and sustainability. American Society for Engineering Management (ASEM), 869–878.

Liao, Y., Deschamps, F., Loures, E. de F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629. https://doi.org/10.1080/00207543.2017.1308576 DOI: https://doi.org/10.1080/00207543.2017.1308576

Lindegren, M. L., Lunau, M. R., Mafia, M. M. P., & Ribeiro da Silva, E. (2022). Combining Simulation and Data Analytics for OEE Improvement. International Journal of Simulation Modelling (IJSIMM), 21(1), 29–40. DOI: https://doi.org/10.2507/IJSIMM21-1-584

Lopes, M., & Martins, R. (2021). Mapping the Impacts of Industry 4 . 0 on Performance Measurement Systems. IEEE Latin America Transactions, 19(11), 1912–1923. https://latamt.ieeer9.org/index.php/transactions/article/view/4807 DOI: https://doi.org/10.1109/TLA.2021.9475625

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005 DOI: https://doi.org/10.1016/j.jii.2017.04.005

Mahmoodpour, M., Lobov, A., Lanz, M., Mäkelä, P., & Rundas, N. (2018). Role-based visualization of industrial IoT-based systems. 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1–8. https://doi.org/10.1109/MESA.2018.8449183 DOI: https://doi.org/10.1109/MESA.2018.8449183

Mello, R., Leite, L. R., & Martins, R. A. (2014). Is big data the next big thing in performance measurement systems? IIE Annual Conference and Expo 2014, 1837–1846.

Mello, R., & Martins, R. A. (2019). Can big data analytics enhance performance measurement systems? IEEE Engineering Management Review, 47(1), 52–57. https://doi.org/10.1109/EMR.2019.2900645 DOI: https://doi.org/10.1109/EMR.2019.2900645

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., … Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

Morella, P., Lambán, M. P., Royo, J., Sánchez, J. C., & Latapia, J. (2020). Development of a new kpi for the economic quantification of six big losses and its implementation in a cyber physical system. Applied Sciences (Switzerland), 10(24), 1–17. https://doi.org/10.3390/app10249154 DOI: https://doi.org/10.3390/app10249154

Mörth, O., Emmanouilidis, C., Hafner, N., & Schadler, M. (2020). Cyber-physical systems for performance monitoring in production intralogistics. Computers and Industrial Engineering, 142(February), 1–10. https://doi.org/10.1016/j.cie.2020.106333 DOI: https://doi.org/10.1016/j.cie.2020.106333

Nabil, D. H., Rahman, M. H., Chowdhury, A. H., & Menezes, B. C. (2023). Managing supply chain performance using a real time Microsoft Power BI dashboard by action design research (ADR) method. Cogent Engineering, 10(2), 1–19. https://doi.org/10.1080/23311916.2023.2257924 DOI: https://doi.org/10.1080/23311916.2023.2257924

Nader, J., Mezher, M. A., & El-Khalil, R. (2021). Towards understanding the impact of industry 4.0 technologies on operational performance: an empirical investigation in the US and EU automotive industry. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2807–2822. DOI: https://doi.org/10.46254/SA02.20210803

Neely, A., Gregory, M., & Platts, K. (2005). Performance measurement system design : a literature review and research agenda. International Journal of Operations & Production Management, 25(12), 1228–1263. https://doi.org/10.1108/01443570510633639 DOI: https://doi.org/10.1108/01443570510633639

Neto, A. A., Deschamps, F., Da Silva, E. R., & De Lima, E. P. (2020). Digital twins in manufacturing: An assessment of drivers, enablers and barriers to implementation. Procedia CIRP, 93, 210–215. https://doi.org/10.1016/j.procir.2020.04.131 DOI: https://doi.org/10.1016/j.procir.2020.04.131

Nudurupati, S. S., Bititci, U. S., Kumar, V., & Chan, F. T. S. (2011). State of the art literature review on performance measurement. Computers and Industrial Engineering, 60(2), 279–290. https://doi.org/10.1016/j.cie.2010.11.010 DOI: https://doi.org/10.1016/j.cie.2010.11.010

Nudurupati, Sai S., & Bititci, U. S. (2005). Implementation and impact of IT-supported performance measurement systems. In Production Planning and Control (Vol. 16, Issue 2, pp. 152–162). https://doi.org/10.1080/09537280512331333057 DOI: https://doi.org/10.1080/09537280512331333057

Nudurupati, Sai S., Tebboune, S., & Hardman, J. (2016). Contemporary performance measurement and management (PMM) in digital economies. Production Planning and Control, 27(3), 226–235. https://doi.org/10.1080/09537287.2015.1092611 DOI: https://doi.org/10.1080/09537287.2015.1092611

Pekarčíková, M., Trebuna, P., Kliment, M., Kopec, J., Dic, M., & Kronová, J. (2023). Case Study : Testing the Overall Efficiency of Equipment in the Production Process in TX Plant Simulation Software. Management and Production Engineering Review, 14(1), 34–42. https://doi.org/10.24425/mper.2023.145364 DOI: https://doi.org/10.24425/mper.2023.145364

Pettigrew, A., & Whipp, R. (1993). Managing Change for Competitive Success. In Wiley-Blackwell. Wiley-Blackwell.

Pilar Lambán, M., Morella, P., Royo, J., & Carlos Sánchez, J. (2022). Using industry 4.0 to face the challenges of predictive maintenance: A key performance indicators development in a cyber physical system. Computers and Industrial Engineering,171(July). https://doi.org/10.1016/j.cie.2022.108400 DOI: https://doi.org/10.1016/j.cie.2022.108400

Raffoni, A., Visani, F., Bartolini, M., & Silvi, R. (2018). Business Performance Analytics: exploring the potential for Performance Management Systems. In Production Planning and Control (Vol. 29, Issue 1, pp. 51–67). https://doi.org/10.1080/09537287.2017.1381887 DOI: https://doi.org/10.1080/09537287.2017.1381887

Raji, I. O., Shevtshenko, E., Rossi, T., & Strozzi, F. (2021). Industry 4.0 technologies as enablers of lean and agile supply chain strategies: an exploratory investigation. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-04-2020-0157 DOI: https://doi.org/10.1108/IJLM-04-2020-0157

Rasool, F., Greco, M., & Grimaldi, M. (2021). Digital supply chain performance metrics: a literature review. Measuring Business Excellence, January. https://doi.org/10.1108/MBE-11-2020-0147 DOI: https://doi.org/10.1108/MBE-11-2020-0147

Reinsel, D., Gantz, J., & Rydning, J. (2018). Data Age 2025: The Digitization of the World From Edge to Core. In Seagate, IDC (Issue November). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Rezqianita, B. L., & Ardi, R. (2020). Drivers and Barriers of Industry 4.0 Adoption in Indonesian Manufacturing Industry. ACM International Conference Proceeding Series, 123–128. https://doi.org/10.1145/3400934.3400958 DOI: https://doi.org/10.1145/3400934.3400958

Saez, M., Maturana, F. P., Barton, K., & Tilbury, D. M. (2018). Real-Time Manufacturing Machine and System Performance Monitoring Using Internet of Things. IEEE Transactions on Automation Science and Engineering, 15(4), 1735–1748. https://doi.org/10.1109/TASE.2017.2784826 DOI: https://doi.org/10.1109/TASE.2017.2784826

Samir, K., Khabbazi, M., Maffei, A., & Onori, M. (2018). Key Performance Indicators in Cyber-Physical Production Systems. Procedia CIRP, 72, 498–502. DOI: https://doi.org/10.1016/j.procir.2018.03.036

Sandengen, O. C., Estensen, L. A., Rodseth, H., & Schjolberg, P. (2016). High Performance Manufacturing - An Innovative Contribution towards Industry 4.0. International Workshop of Advanced Manufacturing and Automation (IWAMA 2016), 14–20. https://doi.org/10.2991/iwama-16.2016.3 DOI: https://doi.org/10.2991/iwama-16.2016.3

Sardi, A., Sorano, E., Cantino, V., & Garengo, P. (2020). Big data and performance measurement research: trends, evolution and future opportunities. Measuring Business Excellence, June 2019. https://doi.org/10.1108/MBE-06-2019-0053 DOI: https://doi.org/10.1108/MBE-06-2019-0053

Schröder, C. (2016). The Challenges of Industry 4.0 for Small and Medium-sized Enterprises. The Friedrich-Ebert-Stiftung, 28. www.fes-2017plus.de

Schwab, K. (2016). A quarta revolução industrial. In Edipro. Edipro.

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803 DOI: https://doi.org/10.1146/annurev-psych-010418-102803

Stentoft, J., Adsbøll Wickstrøm, K., Philipsen, K., & Haug, A. (2020). Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Production Planning and Control, 1–18. https://doi.org/10.1080/09537287.2020.1768318 DOI: https://doi.org/10.1080/09537287.2020.1768318

Supekar, S. D., Graziano, D. J., Riddle, M. E., Nimbalkar, S. U., Das, S., Shehabi, A., & Cresko, J. (2019). A framework for quantifying energy and productivity benefits of smart manufacturing technologies. Procedia CIRP, 80, 699–704. DOI: https://doi.org/10.1016/j.procir.2019.01.095

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464 DOI: https://doi.org/10.1080/09537287.2015.1129464

Türkeş, M. C., Oncioiu, I., Aslam, H. D., Marin-Pantelescu, A., Topor, D. I., & Căpuşneanu, S. (2019). Drivers and barriers in using industry 4.0: A perspective of SMEs in Romania. Processes, 7(3), 1–20. https://doi.org/10.3390/pr7030153 DOI: https://doi.org/10.3390/pr7030153

Venuta, M., Zambetti, M., Pirola, F., Pezzotta, G., Grasseni, P., Ferrari, M., & Salvi, S. (2021). Implementation of IoT Platform’s Dashboards for the Visualisation of Dynamic KPIs: Insights from a Case Study. Working Conference on Virtual Enterprises, 517–525. https://doi.org/10.1007/978-3-030-85969-5_48 DOI: https://doi.org/10.1007/978-3-030-85969-5_48

Wang, W., Zhang, Y., Gu, J., & Wang, J. (2021). A Proactive Manufacturing Resources Assignment Method Based on Production Performance Prediction for the Smart Factory. IEEE Transactions on Industrial Informatics, 18(1), 46–55. https://doi.org/10.1109/TII.2021.3073404 DOI: https://doi.org/10.1109/TII.2021.3073404

Zhou, J., Wang, Y., & Chua, Y. Q. (2020). Machine OEE Monitoring and Analysis for a Complex Manufacturing Environment. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1413–1418. https://doi.org/10.1109/ICIEA48937.2020.9248351 DOI: https://doi.org/10.1109/ICIEA48937.2020.9248351

Published

2024-08-12

How to Cite

Lopes, M. A., & Martins, R. A. (2024). Drivers and enablers for the implementation of industry 4.0 technologies in performance measurement systems: a systematic review. Brazilian Journal of Production Engineering, 10(3), 296–318. https://doi.org/10.47456/bjpe.v10i3.44347

Issue

Section

ORGANIZATIONAL ENGINEERING