Teaching stereochemistry based on modeling: inclusion of students with the use of Amazonian seeds
DOI:
https://doi.org/10.47456/krkr.v1i21.46563Keywords:
chemistry teaching; didactic strategy; isomery; visual impairmentAbstract
The research was developed to contribute in an inclusive way to the teaching and learning of stereochemistry, integrating both visually impaired and visually impaired students in the same classroom environment. The main objective of this research was to develop theoretical, conceptual and contextual competencies about spatial isomerism. To this end, a qualitative research was carried out through a case study, using semi-structured interviews and participant observation. After the application of a didactic sequence with modeling-based teaching, the collected data were analyzed qualitatively. The results demonstrate the potential of the didactic proposal to contribute to the teaching and learning process related to stereochemistry, favored through exchanges and interactions with the adapted materials, enabling the visually impaired student to understand the concepts involved in the representations of molecules with isomerism. Significant progress was observed in the understanding of concepts related to Stereoisomerism of all students. In addition, an adequate internalization of the concepts was observed, evidenced by the results of the post-test, which showed a percentage of correct answers higher than 70%. This proposal implemented in this study advances in the promotion of more inclusive isomeric classes for visually impaired students.
Downloads
References
BRASIL. Base Nacional Comum Curricular: Ensino Médio. Brasília, DF: MEC, 2018.
COHEN, L.; MANION, L.; MORRISON, K. Research Methods in Education. 8. ed. Eighth edition. New York: Routledge, 2018.
GILBERT, J. K.; JUSTI, R. Modelling-based Teaching in Science Education. 1st ed. Cham: Springer International Publishing : Imprint: Springer, 2016.
JOHNSTONE, Alex H. The Development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education n. 70, p.701-704, 1993.
KLEIN, D. Química orgânica: uma aprendizagem baseada em solução de problemas. 3a ed. Vol. 1. Rio de Janeiro: LTC, 2017.
MANTOAN, M. T. E. Inclusão escolar: o que é? por quê? como fazer? 1 ed. São Paulo, SP: Moderna, 2003.
MINAYO, M. C. S. (Org). Pesquisa social: teoria, método e criatividade. 21. ed. Petrópolis, RJ: Editora Vozes, 2002.
MÓL, G. (ORG.). O ensino de ciências na escola inclusiva. Campos dos Goytacazes: Brasil Multicultural, 2019.
MORTIMER, E. F.; MACHADO, A. H.; ROMANELLI. L. I. A proposta curricular de química do estado de minas gerais: fundamentos e pressupostos. Química Nova na Escola, n. 23(3), p. 273-283, 2000.
PICHETH, S. F.; CASSANDRE, M. P.; THIOLLENT, M. J. M. Analisando a pesquisa-ação à luz dos princípios intervencionistas: um olhar comparativo. Educação, v. 39, n. 4, p. 3, 31 dez. 2016.
POZO, J. I.; CRESPO, M. A. G. A aprendizagem e o ensino de ciências: do conhecimento cotidiano ao conhecimento científico. 5ª ed. Porto Alegre: Artmed 2009.
SILVA, R. S. F. (ET AL). Química orgânica. 1. ed. Rio de Janeiro: LTC, 2018.
VYGOTSKY, L. S. Pensamento e linguagem. São Paulo: Martins Fontes, 2008.
YIN, Robert K. Estudo de caso: planejamento e métodos/ trad. Daniel Grassi - 5ª ed. Porto Alegre: Bookman, 2015.
YIN, Robert K. Pesquisa qualitativa do início ao fim/ trad. Daniel Bueno – Porto Alegre: Penso, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Amauri Rodrigues de Carvalho, Ronilson Freitas de Souza
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors accept, when sending their works, the assignment of their copyrights.