Transporte de mezclas de hidrógeno y gas natural por tuberías: una revisión de la literatura reciente.
DOI:
https://doi.org/10.21712/lajer.2025.v12.n3.p99-108Palabras clave:
mezcla de hidrógenoResumen
Este estudio presenta una revisión bibliométrica sobre el transporte de mezclas de hidrógeno y gas natural a través de ductos. El objetivo es identificar las tendencias de investigación y los principales contribuyentes a la producción científica relacionada con la mezcla de hidrógeno como estrategia para apoyar la transición energética. El análisis empleó un enfoque cuantitativo basado en bibliometría, utilizando la herramienta Bibliometrix en R Studio para procesar datos extraídos de las bases de datos Scopus y Web of Science entre 2020 y 2025. Se aplicó la ecuación Methodi Ordinatio para clasificar las publicaciones más relevantes.Los resultados muestran un crecimiento significativo en la investigación sobre el transporte de hidrógeno mediante la infraestructura de gas existente, con China liderando la producción científica a nivel global. El International Journal of Hydrogen Energy se destaca como la principal fuente de publicación. Persisten desafíos como la fragilización por hidrógeno, la compatibilidad de materiales y los costos de transporte, los cuales continúan siendo barreras para su implementación a gran escala.Esta revisión contribuye al mapeo de los principales actores, regiones y vacíos de conocimiento, destacando la necesidad de futuras investigaciones que integren el análisis del ciclo de vida y estudios de integridad de materiales para garantizar una mezcla de hidrógeno segura y económicamente viable en redes de ductos.
Descargas
Referencias
American Petroleum Institute (API) (2023) Hydrogen blending into natural gas pipeline systems: Technical and operational considerations. http://api.org/~/media/files/publications/whats%20new/941_e8%20pa.pdf
Aria, M and Cuccurullo, C. (2017) ‘Bibliometrix: An R-tool for comprehensive science mapping analysis’, Journal of Informetrics, p. 959–975.
ASME (2024) B31.12 – Hydrogen piping and pipelines. https://www.asme.org/codes-standards/find-codes-standards/b31-12-hydrogen-piping-pipelines
Baldam, R (2021) Science Mapping (Bibliometria): Workshop On Line [vídeo]. YouTube. https://www.youtube.com/watch?v=5KSa6AihrWU
Broadus, R (1987) ‘Toward a definition of bibliometrics’, Scientometrics, p. 373–379.
Diodato, V (1994) Dictionary of bibliometrics. Binghamton, NY: Haworth Press.
European Hydrogen Backbone (EHB) (2023) European Hydrogen Backbone grows to meet REPowerEU’s 2030 hydrogen targets. https://ehb.eu/newsitem/european-hydrogen-backbone-grows-to-meet-repowereu-s-2030-hydrogen-targets (accessed 1 october 2025).
Hafsi, Z, Elaoud, S e Mishra, M (2019) ‘A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines’, Journal of Natural Gas Science and Engineering, v. 64, p. 107–117. https://doi.org/10.1016/j.jngse.2019.01.021
Huang, Q, Sun, ZY e Du, YL (2024) ‘Enhancing safety in hydrogen storage: Understanding the dynamic process in hydrogen-methane mixtures during the pressurized leakage’, Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.10.100
Hunt, JD et al. (2023) Aspectos sobre o armazenamento e transporte de hidrogênio. Brasília DF: LaSUSFAU UnB.
Hydrogen Council (2020) Path to hydrogen competitiveness: A cost perspective. https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective/?form=MG0AV3 (accessed 1 march 2025).
IEA (2019) The future of hydrogen – analysis. https://www.iea.org/reports/the-future-of-hydrogen?form=MG0AV3 (accessed 1 march 2025).
Instituto de Pesquisa Econômica Aplicada (Ipea) (2023) Hidrogênio no Brasil: subsídios para uma estratégia nacional. https://repositorio.ipea.gov.br/server/api/core/bitstreams/e36b6bda-6060-474f-9548-05eda6aff1dd/content (accessed 1 october 2025).
International Organization for Standardization (ISO) (2020) ISO 19880-1: Gaseous hydrogen – fuelling stations – Part 1: General requirements. https://www.iso.org/standard/67952.html (accessed 3 march 2025).
Jewett, RP, Walter, RJ e Chandler, WT (1973) Hydrogen environment embrittlement of metals. NTRS – NASA Technical Reports Server.
JFE Steel Corporation (2024) JFE Steel develops high-pressure hydrogen pipeline steel with enhanced resistance to hydrogen embrittlement. https://www.jfe-steel.co.jp/en/release/2024/07/240717.html (accessed 1 march 2025).
Keele University (n.d.) HyDeploy. https://www.keele.ac.uk/sustainable-futures/ourchallengethemes/providingcleanenergyreducingcarbonemissions/hydeploy/ (accessed 1 march 2025).
Kong, Y et al. (2023) ‘Experimental study on jet fire characteristics of hydrogen-blended natural gas’, International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.09.153
Lundström, TS (2024) ‘Evaluating hydrogen gas transport in pipelines: Current state of numerical and experimental methodologies’, International Journal of Hydrogen Energy, v. 67, p. 136–149. https://doi.org/10.1016/j.ijhydene.2024.04.140
Martin, P et al. (2024) ‘A review of challenges with using the natural gas system for hydrogen’, Energy Science & Engineering. https://doi.org/10.1002/ese3.1861
Miao, H, Lu, L e Huang, Z (2011) ‘Flammability limits of hydrogen-enriched natural gas’, International Journal of Hydrogen Energy, 36(11), p. 6937–6947. https://doi.org/10.1016/j.ijhydene.2011.02.126
Mustafa, H, Kamal, R e Mohamed, R (2024) ‘The optimal proportion for blending hydrogen with natural gas to facilitate its utilization and transportation through the national gas transportation network’, Egyptian Journal of Chemistry. https://doi.org/10.21608/ejchem.2024.258537.9091
Natural Resources Canada (2021) Pipelines across Canada. https://natural-resources.canada.ca/our-natural-resources/energy-sources-distribution/fossil-fuels/pipelines/pipelines-across-canada/18856
Ouyang, B et al. (2025) ‘Simulation and analysis of leakage characteristics in hydrogen-blended natural gas pipelines’, International Journal of Hydrogen Energy, v. 99, p. 888–897. https://doi.org/10.1016/j.ijhydene.2024.12.205
Pagani, RN, Kovaleski, JL e Resende, LM (2015) ‘Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication’, Scientometrics, 105(3), p. 2109–2135.
Popov, BN, Lee, JW and Djukic, MB (2018) ‘Hydrogen permeation and hydrogen-induced cracking’, in Kutz, M. (ed.) Handbook of Environmental Degradation of Materials. 3rd ed. William Andrew Publishing, p. 133–162.
Pritchard, A (1969) ‘Statistical bibliography or bibliometrics’, Journal of Documentation, v.25, p. 348.
Puga, M and Asencios, YJ (2023) ‘Avanços e limitações da produção, armazenamento e transporte de hidrogênio verde’, Latin American Journal of Energy Research, 10(2), p. 74–93. https://doi.org/10.21712/lajer.2023.v10.n2.p74-93
Raj, A et al. (2019) ‘Natural gas: A transition fuel for sustainable energy system transformation?’, Energy Science & Engineering, 7(4), p. 1075–1094. https://doi.org/10.1002/ese3.380
Sivaranjani, R et al. (2023) ‘A comprehensive review on biohydrogen production pilot scale reactor technologies: Sustainable development and future prospects’, International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.161
Topolski, K et al. (2022) Hydrogen blending into natural gas pipeline infrastructure: Review of the state of technology.
US Department of Energy (n.d.) HyBlend: Opportunities for hydrogen blending in natural gas pipelines. https://www.energy.gov/eere/fuelcells/hyblend-opportunities-hydrogen-blending-natural-gas-pipelines (accessed 30 september 2025).
Wang, G, Ogden, J and Nicholas, M (2007) ‘Lifecycle impacts of natural gas to hydrogen pathways on urban air quality’, International Journal of Hydrogen Energy, v. 32, p. 2731–2742.
Yuxing, L, Rui, Z e Cuiwei, L (2022) ‘Hydrogen embrittlement behavior of typical hydrogen blended natural gas pipeline steel’, Oil Gas Storage Transp., 41(6). https://doi.org/10.6047/j.issn.1000-8241.2022.06.015
Zhao, Z et al. (2024) ‘Techno-economic analysis of green hydrogen integration into existing pipeline infrastructure: A case study of Wyoming’, International Journal of Hydrogen Energy, v. 93, p. 574–584. https://doi.org/10.1016/j.ijhydene.2024.10.441
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Latin American Journal of Energy Research

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.

