Photovoltaic cells with transparency for glass coverage: case study in party space

Autores/as

  • Christian Antonio Dos Santos Universidade do Contestado, Concórdia
  • Ágata Vendruscolo Universidade do Contestado, Concórdia
  • Bruna Rogovski Universidade do Contestado, Concórdia
  • Mari Aurora Favero REIS Universidade do Contestado, Concórdia

DOI:

https://doi.org/10.21712/lajer.2024.v11.n1.p114-120

Palabras clave:

party space, photovoltaic technologies, energy sustainability, thermal comfort, renewable energy

Resumen

Sustainable energy and technological development in electricity generation processes offer opportunities for the development and utilization of new photovoltaic technologies in construction. Photovoltaic cells for glazed surfaces, known as double glass or double-skin, have been applied in modern buildings due to their attributed characteristics that can enhance thermal comfort, provide natural lighting for internal areas, ensure privacy in external environments, and reduce energy consumption. The objective of this study is to investigate the viability of using double glass in the glazed roof of a family party venue. The qualitative method, a case study, was employed to assess the demand for electrical energy in the building and the potential use of double glass photovoltaic technologies. Market research was initially conducted with technology suppliers, enabling the evaluation of characteristics for the technological and economic feasibility of the project. The results show that the installation of double glass photovoltaic technology offers 40% transparency to solar radiation through the roof, resulting in thermal and luminous comfort. In terms of economic viability, the study demonstrates the possibility of return on investment in 4.6 years, considering energy generation, reduced building energy costs, and installation expenses. The installation of double glass technology, according to market research, is economically viable and generates local electrical energy for residents, providing comfort in the environment and enhancing the quality of life for occupants.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Christian Antonio Dos Santos, Universidade do Contestado, Concórdia

Mestre pelo Programa de Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental (PMPECSA) na Universidade do Contestado, Concórdia SC, Brasil

Ágata Vendruscolo, Universidade do Contestado, Concórdia

Acadêmica do curso de Administração, foi bolsista de Iniciação Científica na Universidade do Contestado (FAP-UNC), Concórdia SC, Brasil

Bruna Rogovski, Universidade do Contestado, Concórdia

Engenharia Civil pela Universidade do Contestado, Campus de Concórdia, foi bolsista de Iniciação Científica (PIBITI de 2018-2019), Concórdia SC, Brasil

Mari Aurora Favero REIS, Universidade do Contestado, Concórdia

Professora no Programa de Pós-Graduação em Sistemas Produtivos (PPGSP – UNIPLAC, UNC, UNESC, UNIVILLE) e no Programa de Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental; Universidade do Contestado, Campus de Concórdia, Brasil.

Citas

Ahmed, MI, Habib, A and Javaid, SS (2015) ‘Perovskite Solar Cells: Potentials, Challenges, and Opportunities’, International Journal of Photoenergy, 2015, p. 13 p. https://doi.org/10.1155/2015/592308 DOI: https://doi.org/10.1155/2015/592308

Baghel, NS and Chander, N (2022) ‘Performance comparison of mono and polycrystalline silicon solar photovoltaic modules under tropical wet and dry climatic conditions in east-central India’, Clean Energy, 6(1), pp. 165–177. https://doi.org/10.1093/ce/zkac001 DOI: https://doi.org/10.1093/ce/zkac001

Brasil, ANDEE (2012) Resolução Normativa 414/2010: atualizada até a REN 499/2012, Agência Nacional De Energia Elétrica. Brasil. Available at: https://www.cmcruzeiro.sp.gov.br/prestacao/Res_ANEEL_414_2010_atual_REN_499_2012.pdf (accessed 18 September 2023).

Dark, ML (2011) ‘A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates’, Physics Education, 46(3), pp. 303–308. https://doi.org/10.1088/0031-9120/46/3/008 DOI: https://doi.org/10.1088/0031-9120/46/3/008

Drumond Jr, P, de Castro, RD and Seabra, JAE (2021) ‘Impact of tax and tariff incentives on the economic viability of residential photovoltaic systems connected to energy distribution network in Brazil’, Solar Energy, 224(June 2020), pp. 462–471. https://doi.org/10.1016/j.solener.2021.06.034 DOI: https://doi.org/10.1016/j.solener.2021.06.034

Gambogi, W et al. (2020) ‘Transparent Backsheets for Bifacial Photovoltaic Modules’, in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, pp. 1651–1657. https://doi.org/10.1109/pvsc48317.2022.9938854 DOI: https://doi.org/10.1109/PVSC45281.2020.9300924

Jankovic, A and Goia, F (2021) ‘Impact of double skin facade constructional features on heat transfer and fluid dynamic behaviour’, Building and Environment, 196 (November 2020), p. 107796. https://doi.org/10.1016/j.buildenv.2021.107796 DOI: https://doi.org/10.1016/j.buildenv.2021.107796

Lien, C-Y et al. (2018) ‘Clinical characteristics of Citrobacter meningitis in adults: High incidence in patients with a postneurosurgical state and strains not susceptible to third-generation cephalosporins’, Journal of Clinical Neuroscience, 54, pp. 83–87. https://doi.org/10.1016/j.jocn.2018.06.019 DOI: https://doi.org/10.1016/j.jocn.2018.06.019

Năstase, G et al. (2016) ‘Box double-skin façade. Experimental research in heat transfer in temperate continental climate’, in 16o International Multidisciplinary Scientific GeoConference: SGEM. Transilvania University of Brasov, Romania, pp. 493–500. Available at: https://search.proquest.com/openview/51c00730f6686519c57fca99f0054ed2/1?pq-origsite=gscholar&cbl=1536338 (accessed 20 July 2020).

ONU, N.U.B. (no date) Objetivos de Desenvolvimento Sustentável. Available at: https://brasil.un.org/index.php/pt-br/sdgs

Pagliaro, M, Ciriminna, R and Palmisano, G (2008) ‘Flexible Solar Cells’, ChemSusChem, 1(11), pp. 880–891. https://doi.org/10.1002/cssc.200800127 DOI: https://doi.org/10.1002/cssc.200800127

Preet, S et al. (2021) ‘Analytical model of semi-transparent photovoltaic double-skin façade system (STPV-DSF) for natural and forced ventilation modes’, International Journal of Ventilation, pp. 1–30. https://doi.org/10.1080/14733315.2021.1971873 DOI: https://doi.org/10.1080/14733315.2021.1971873

Preet, S, Mathur, J and Mathur, S (2022) ‘Influence of geometric design parameters of double skin façade on its thermal and fluid dynamics behavior: A comprehensive review’, Solar Energy, 236, pp. 249–279. https://doi.org/10.1016/j.solener.2022.02.055 DOI: https://doi.org/10.1016/j.solener.2022.02.055

Reis, MAF, Reis Júnior, P and Perin, DL (2020) ‘Sustentabilidade energética em escola pública’, MIX Sustentável, 6(3), pp. 37–44. https://doi.org/10.29183/2447-3073.MIX2015.v1.n1.4-5 DOI: https://doi.org/10.29183/2447-3073.MIX2020.v6.n3.37-44

Reis, MAF and Serrano, A (2017) ‘Pesquisa Bibliográfica em Historicidade, Conceitos e Contextos na Produção e Transformação da Luz por meio da Teoria Quântica’, Acta Scientiae, 19(3), pp. 493–516.

Reis, MAF and Serrano, A (2022) ‘Teaching photoelectric effect with photovoltaic cells use in the physics laboratory’, in Graça S. Carvalho, Anastácio, A.S.A. and Z. (ed.) Fostering scientific citizenship in an uncertain world. Braga: CIEC, University of Minho, Portugal.: ESERA 2021, pp. 1305–1312. Available at: https://www.esera.org/wp-content/uploads/2023/02/CNF21-Complete-eProceedings.pdf (accessed 14 February 2023).

Rodrigues, TTV, Carlo, JC and Oliveira Filho, D (2018) ‘Thermal modeling of semi-transparent photovoltaics: impacts on the cell efficiency and on the zone performance’, PARC Pesquisa em Arquitetura e Construção, 9(4), pp. 305–318. https://doi.org/10.20396/parc.v9i4.8652785 DOI: https://doi.org/10.20396/parc.v9i4.8652785

Schönell, R et al. (2020) ‘Estudo comparativo entre fotovoltaicos flexíveis e tradicionais em toldos da universidade’, Revista Gestão & Sustentabilidade Ambiental, 9(2), p. 536. https://doi.org/10.19177/rgsa.v9e02020536-550 DOI: https://doi.org/10.19177/rgsa.v9e02020536-550

Shakouri, M et al. (2022) ‘Multi-objective 4E analysis for a building integrated photovoltaic thermal double skin Façade system’, Solar Energy, 233, pp. 408–420. https://doi.org/10.1016/j.solener.2022.01.036 DOI: https://doi.org/10.1016/j.solener.2022.01.036

Sinha, A et al. (2021) ‘Glass/glass photovoltaic module reliability and degradation: a review’, Journal of Physics D: Applied Physics, 54(41), p. 413002. http://dx.doi.org/10.1088/1361-6463/ac1462 DOI: https://doi.org/10.1088/1361-6463/ac1462

Sun, Y et al. (2021) ‘Flexible High‐Performance and Solution‐Processed Organic Photovoltaics with Robust Mechanical Stability’, Advanced Functional Materials, 31(16), p. 2010000. https://doi.org/10.1002/adfm.202010000 DOI: https://doi.org/10.1002/adfm.202010000

Tang, J et al. (2017) ‘The Performance of Double Glass Photovoltaic Modules under Composite Test Conditions’, Energy Procedia, 130, pp. 87–93. https://doi.org/10.1016/j.egypro.2017.09.400 DOI: https://doi.org/10.1016/j.egypro.2017.09.400

Tang, W et al. (2022) ‘Convolution neural network based polycrystalline silicon photovoltaic cell linear defect diagnosis using electroluminescence images’, Expert Systems with Applications, 202, p. 117087. https://doi.org/10.1016/j.eswa.2022.117087 DOI: https://doi.org/10.1016/j.eswa.2022.117087

Velasco, A et al. (2017) ‘Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates’, Energies, 10(11), p. 1825. https://doi.org/10.3390/en10111825 DOI: https://doi.org/10.3390/en10111825

Yu, J, Zheng, Y and Huang, J (2014) ‘Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics’, Polymers, 6(9), pp. 2473–2509. https://doi.org/10.3390/polym6092473 DOI: https://doi.org/10.3390/polym6092473

Descargas

Publicado

05-06-2024

Cómo citar

Dos Santos, C. A., Vendruscolo, Ágata, Rogovski, B., & REIS, M. A. F. (2024). Photovoltaic cells with transparency for glass coverage: case study in party space. Latin American Journal of Energy Research, 11(1), 114–120. https://doi.org/10.21712/lajer.2024.v11.n1.p114-120

Número

Sección

Eficiência Energética