Produção de combustível a partir de resíduos de embalagens tetra pak em leito fluidizado: identificação de fatores que afetam a mistura de partículas de areia e compósito PEBD/AL
DOI:
https://doi.org/10.47456/bjpe.v7i5.36926Palavras-chave:
Alumínio, Fluidodinâmica, Mistura de partículas, Energia, Embalagens cartonadasResumo
Rotas integradas pirólise catalítica e refino possibilitam a conversão de poliolefinas proveniente de resíduos de embalagens cartonadas pós-consumo em combustíveis e produtos químicos de interesse comercial. Essa tecnologia contribui para a redução dos impactos ambientais decorrentes do descarte inadequado desses resíduos. Além disso, a recuperação do compósito PEBD/Al (polietileno de baixa densidade e alumínio) via pirólise permite a obtenção de produtos com altos valores agregados, tais como a parafina e alumínio com alto teor de pureza. A originalidade desta pesquisa deve-se ao desenvolvimento de uma coluna cilíndrica de leito fluidizado com um sistema de guilhotinas. A inserção de um sistema de guilhotinas a coluna cilíndrica permite avaliar a concentração axial de partículas de compósito PEBD/Al. Além disso, esta pesquisa visa investigar o efeito da velocidade de injeção do ar e da fração mássica de compósito PEBD/Al sobre o índice de mistura de partículas (Im), mediante a um planejamento experimental 3². Sob o ponto de vista da mistura de partículas no leito, a análise de resultados indica que a produção de combustível a partir de poliolefinas pode ser favorecida quando o reator é empregado com velocidade ar 25 % acima da mínima fluidização.
Downloads
Referências
Al-Salem, S. M., Lettieri, P. & Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103–129. https://doi.org/10.1016/J.PECS.2009.09.001
Armenise, S., SyieLuing, W., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J. & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158, 105265. https://doi.org/10.1016/J.JAAP.2021.105265
Barbarias, I., Lopez, G., Artetxe, M., Arregi, A., Bilbao, J. & Olazar, M. (2018). Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management, 156, 575–584.
Braido, R. S., Borges, L. E. P. & Pinto, J. C. (2018). Chemical recycling of crosslinked poly(methyl methacrylate) and characterization of polymers produced with the recycled monomer. Journal of Analytical and Applied Pyrolysis, 132, 47–55. https://doi.org/10.1016/J.JAAP.2018.03.017
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/J.BIOMBIOE.2011.01.048
Chenier, P. (2002). Survey of Industrial Chemistry. In Chemical Engineering and Processing: Process Intensification (3rd editio, Vol. 32, Issue 3). Kluwer Academic/Plenum Publishers. https://doi.org/10.1016/0255-2701(93)80016-a
Daleffe, R. V., Ferreira, M. C. & Freire, J. T. (2005). Drying of pastes in vibro-fluidized beds: Effects of the amplitude and frequency of vibration. Drying Technology, 23(9–11), 1765–1781. https://doi.org/10.1080/07373930500209681
Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782
Jung, S. H., Cho, M. H., Kang, B. S. & Kim, J. S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009
Kaminsky, W. (2021). Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Communications, 8, 100023. https://doi.org/10.1016/J.JFUECO.2021.100023
Kang, B. S., Kim, S. G. & Kim, J. S. (2008). Thermal degradation of poly(methyl methacrylate) polymers: Kinetics and recovery of monomers using a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 81(1), 7–13. https://doi.org/10.1016/J.JAAP.2007.07.001
Kumar, S., Panda, A. K. & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893–910. https://doi.org/10.1016/J.RESCONREC.2011.05.005
Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J. & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576–596. https://doi.org/10.1016/J.RSER.2017.09.032
Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. In Renewable and Sustainable Energy Reviews (Vol. 73, pp. 346–368). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.01.142
Mantegazini, D. Z., Neves, F. L., Xavier, T. P. & Bacelos, M. S. (2021). Review on Advanced Technologies for Aluminum Recovery From Carton Packages Waste Using Pyrolysis. Brazilian Journal of Production Engineering - BJPE, 117–129. https://doi.org/10.47456/bjpe.v7i1.34583
Mantegazini, D. Z., Xavier, T. P. & Bacelos, M. S. (2021). Conical spouted beds for waste valorization: Assessment of particle segregation in beds composed of sand and Tetra Pak residues. Sustainable Energy Technologies and Assessments, 47, 101334. https://doi.org/10.1016/J.SETA.2021.101334
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/J.PSEP.2016.06.022
Nienow, A. W., Naimer, N. S. & Chiba, T. (1987). Studies of Segregation / Mixing in Fluidised Beds of Different Size Particles Studies of Segregation mixing in Fluidised Beds of Different Size Particles. The Society of Chemical Engineers, 457–460.
Olazar, M., José, M. J. S., Peñas, F. J., Aguayo, A. T. & Bilbao, J. (1993). Stability and Hydrodynamics of Conical Spouted Beds with Binary Mixtures. Industrial and Engineering Chemistry Research, 32(11), 2826–2834. https://doi.org/10.1021/ie00023a053
Orozco, S., Alvarez, J., Lopez, G., Artetxe, M., Bilbao, J. & Olazar, M. (2021). Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. Energy Conversion and Management, 229.
Santos, A. C. O. (2020). Segregação de misturas binárias de areia e compósito PEBD/Al em leito fluidizado para pirólise rápida de resíduos cartonados. Tese (Mestrado em Energia),UFES, São Mateus-ES.
Solis, M. & Silveira, S. (2020). Technologies for chemical recycling of household plastics – A technical review and TRL assessment. Waste Management, 105, 128–138. https://doi.org/10.1016/J.WASMAN.2020.01.038
Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. (2020). The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem, 13(7), 1764–1774. https://doi.org/10.1002/CSSC.201903434
Zhou, N., Dai, L., Lyu, Y., Li, H., Deng, W., Guo, F., Chen, P., Lei, H. & Ruan, R. (2021). Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 418, 129412. https://doi.org/10.1016/J.CEJ.2021.129412
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Brazilian Journal of Production Engineering - BJPE
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribuição 4.0 internacional CC BY 4.0 Deed
Esta licença permite que outros remixem, adaptem e desenvolvam seu trabalho não comercialmente, contanto que eles creditem a você e licenciem suas novas criações sob os mesmos termos.