Viscosity reduction of Ricinus communis L. (MAMONA) biodiesel by chemical acetylation

Authors

DOI:

https://doi.org/10.47456/bjpe.v7i3.35894

Keywords:

Derivatization, RMN, chemistry

Abstract

Castor seed oil (Ricinus communis L.) is used for biodiesel production due to its resistance and the fact that it does not compete with food production, however a high concentration of ricinoleic acid in its chemical composition gives the oil of R. communis some atypical characteristics, such as high viscosity. Therefore, this research aimed to analyze an acetylation reaction of ricinoleic esters as an alternative to reduce the viscosity of R. communis biodiesel. The oil from the seeds and R. communis was elegant and transesterified by two methods (A with 30 minutes and B with 60 minutes), where the reaction time is differentiated and after that the two types of biodiesels were acetylated. The physicochemical tests of the oil and biodiesel and 1H and 13C NMR of the oil and acetylated biodiesel were carried out. The physical-chemical properties of the specifications, with the exception of density and viscosity. An analysis by 1H and 13C NMR showed a major presence of ricinoleic acid in the oil of R. communis and proved the efficiency of the acetylation reaction. Acetylation reduced viscosity by 30.45% in method A and 32.66% in method B. Chemical acetylation is an alternative for reducing the viscosity of R. communis biodiesel.

Downloads

Download data is not yet available.

Author Biographies

Carmem Cícera Maria da Silva, Universidade Federal do Espírito Santo, UFES, Brasil

Graduated in Chemistry with Technological Attributions from the Federal University of Piauí (2003), Master's in Chemistry from the Federal University of Piauí (2006), PhD in Environmental Science and Technology from the Federal University of Grande Dourados (2019) and post-doctoral internship in progress at UFES (2020) I have experience in the field of Chemistry, with emphasis on Organic Chemistry (Undergraduate Research, Master's and part of the Doctorate) and Physical Chemistry (part of the Master's and Doctorate), working mainly on the following topics: biodiesel, Cenostigma macrophyllum, safety, environment and health, quality tools, quality inspector and coping with Covid 19. From 2005 to 2015 I worked in the management of industrial processes such as Biodiesel, Oil Refining, Tanneries and Mining. (Text provided by the author)

Leila Cristina Konradt Moraes, Universidade Estadual de Mato Grosso do Sul, UEMS, Brasil

Degree in Chemical Engineering, Master's and Doctorate in Process Development in the sub-area of ​​Environmental Engineering from the State University of Maringá (UEM). Since graduation developing research, he has worked in graduate studies evaluating the efficiency of natural coagulants and membrane filtration processes. He has experience in developing research projects, some of them funded by Capes and CNPq, mainly on the following topics: drinking water, natural coagulants, effluent treatment, membrane filtration, coagulation/flocculation, microalgae, biofuels and biodiesel. Also having as professional experiences teaching at the Department of Chemistry at the State University of Maringá (UEM) and at the Universidade do Oeste Paulista (UNOESTE) and working at the Laboratory for the Analysis of Pesticides Residues at Embrapa Agropecuária Oeste - Dourados - MS. He is currently an adjunct professor at the State University of Mato Grosso do Sul (UEMS), main campus, Dourados, teaching classes for Industrial Chemistry and Environmental Engineering courses and Assistant Coordinator of the Environmental Engineering course. (Text provided by the author)

José Ribeiro dos Santos Júnior, Universidade Federal do Piauí, UFPI, Brasil

He holds a degree in Chemical Engineering from the Federal University of Ceará (1978), a Master's in Chemistry (Physical-Chemistry) from the University of São Paulo (1991) and a PhD in Chemistry (Physical-Chemistry) from the University of São Paulo (1995). He was president of the Regional Council of Chemistry XVIII Region until February 2019, he is Full Professor at the Federal University of Piauí. He has experience in the field of Chemistry, in Electrochemistry of self-assembled films, conductive polymers (polyaniline), application of polymers in corrosion, and in biofuel-synthesis of biodiesel by transesterification and catalysis, glycerin applications. Use of vegetable oils in electrical distribution transformers. (Text provided by the author)

Thiago Luis Aguayo de Castro, Universidade Estadual de Mato Grosso do Sul, UEMS, Brasil

Technician in Chemistry at SENAI-SC, undergraduate student of Industrial Chemistry at the State University of Mato Grosso do Sul. Did he receive the Special Innovation Highlight at the V Brazilian Scientific Initiation Fair and was nominated for the Highlight Award in Scientific and Technological Initiation? CNPq in 2021. CNPq-UEMS Scholarship for Scientific Initiation under the guidance of Prof. Dr. Claudia Andrea Lima Cardoso. Intern at Embrapa Agropecuária Oeste in the residual pesticide analysis laboratory. Experienced in the study of native plants and biofuels. (Text provided by the author)

References

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2014). Resolução ANP Nº 45 de 25/08/2014. Dispõe sobre a especificação do biodiesel contida no Regulamento Técnico ANP nº 3 de 2014 e as obrigações quanto ao controle da qualidade a serem atendidas pelos diversos agentes econômicos que comercializam o produto em todo o território nacional. Diário da união: Brasília.

Assunção, J. C. C.; Valdevino, F. I. S. P., & Rodrigues, F. E. A. (2020). Acetilação enzimática do biodiesel de Ricinus communis L. (mamona) visando a redução de sua viscosidade. Conexões Ciência e Tecnologia 14(3), 84-93. https://doi.org/10.21439/conexoes.v14i3.1459

Azevedo, D. M. P., & Lima, E. F. (2001). Agronegócio da mamona no Brasil. Brasília: Embrapa Informação Tecnológica.

Borges, I. B., Faria, W. O., Pereira, E. C., Pureza, M. S., Siquara, L. L., Freitas, R. R., & Porto, P. S. S. Programa jovens e meninas fazendo engenharia:cultivo de biomassa microalgal. Brazilian Journal of Production Engineering 2(2), 14-19. https://doi.org/10.0001/v2n3_nt01

Barros, A. I., Oliveira, A. P., Magalhães, M. R. L., & Villa, R. D. (2012). Determination of sodium and potassium in biodiesel by flame atomic emission spectrometry, with dissolution in ethanol as a single sample preparation step. Fuel 93, 381-384. https://doi.org/10.1016/j.fuel.2011.08.060

Barros, L. H. C.; Purificação, M. C., Campanha, N., Silva, T. F. H., & Santos, A. G. (2020). Biodiesel do óleo da semente de pinha produzido por reação via aquecimento e ultrassom. South American Journal of Basic Education, Technical and Technological 7(1), 94-107. Recuperado de https://periodicos.ufac.br/index.php/SAJEBTT/article/view/3316

Brasil. Lei nº 11.097, de 13 de janeiro de 2005. Dispõe sobre a introdução do biodiesel na matriz energética brasileira. Diário Oficial da República Federativa do Brasil, Brasília, DF, 14 jan. 2005.

Cangemi, J. M., Santos, A. M., & Neto, S. C. (2010). A revolução verde da mamona. Química Nova na Escola 32(1), 1-6. Recuperado de http://qnesc.sbq.org.br/online/qnesc32_1/02-QS-1209.pdf

Chechetto, R. G., Siqueira, R., & Gamero, C. A. (2010). Balanço energético para a produção de biodiesel pela cultura da mamona (Ricinus communis L.). Revista Ciência Agronômica 41(4), 546-553. https://doi.org/10.1590/S1806-66902010000400006

César, A. S., & Batalha, M. O. (2011). Análise dos direcionadores de competitividade sobre a cadeia produtiva de biodiesel: o caso da mamona. Produção 21(3), 484-497. https://doi.org/10.1590/S0103-65132011005000039

Costa, L. G., Sitoe, B. V., Santos, D. Q., & Neto, W. B. (2020). Quantificação do teor de biodiesel de crambe em misturas com diesel utilizando espectroscopia MIR e seleção de variáveis. Química Nova 43(6), 723-728. https://doi.org/10.21577/0100-4042.20170554

Das, M., Sarkar, M., Datta, A., & Santra, A. K. (2018). An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renewable Energy 119, 174-184. https://doi.org/10.1016/j.renene.2017.12.014

Elango, R. K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., & Tamilarasan, K. (2019). Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchemical Journal 145(1), 1162–1168. https://doi.org/10.1016/j.microc.2018.12.039

Erdoğana, S., Balki, M. K., & Sayin, C. (2020). The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine. Fuel 253, 1162-1167. https://doi.org/10.1016/j.fuel.2019.05.114

Ferreira, R. S., & Melo, A. S. (2019). Análise das fontes de crescimento do valor bruto da produção da mamona no período de 1990 a 2016. Revista em Agronegócio e Meio Ambiente 12(2), 487-513. https://doi.org/10.17765/2176-9168.2019v12n2p487-513

Fracetto, F. J. C., Fracetto, G. G. M., Feigl, B. J., Cerri, C. C., & Neto, M. S. (2015). Emissões de gases de efeito estufa na produção de mamona e de seus subprodutos. Revista Caatinga 28(4), 90-98. https://doi.org/10.1590/1983-21252015v28n410rc

Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum 27, 979-984. https://doi.org/10.1016/j.ejpe.2018.02.007

Knothe, G. (2001). Determining the blend level of mixtures of biodiesel with conventional diesel fuel by fiber-optic near-infrared spectroscopy and 1h nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists' Society, 78(10), 1025-1028. https://doi.org/10.1007/s11746-001-0382-0

Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84, 1059-1065. https://doi.org/10.1016/j.fuel.2005.01.016

Konradt-Moraes, L. C., Oliveira Junior, J. P., Cardoso, C. A. L., & Vieira, S. C. H. (2019). Extração e quantificação do teor de lipídios de Microalgas de Piscicultura visando a produção de Biodiesel. In: Santos, F. (Org.), Meio Ambiente em Foco, (Vol. 9, Chap. 11, pp. 99-105). Belo Horizonte: Poisson.

Lima, R. L. S., Severino, L. S., Sampaio, L. R., Sofiatti, V., Gomes, J. Á., & Beltrão, N. E. M. (2011). Blends of castor meal and castor husks for optimized use organic fertilizer. Industrial Crops and Products 33(2), 364-368. https://doi.org/10.1016/j.indcrop.2010.11.008

Lima, J. R. O., Silva, R. B., Silva, C. C. M., Santos, L. S. S., Santos Júnior, J. R., Moura, E. M., & Moura, C. V. R. (2005). Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Química Nova 30(3), 600-603. https://doi.org/10.1590/S0100-40422007000300019

Lôbo, I. P., Ferreira, S. L. C., & Cruz, R. S. (2009). Biodiesel: Parâmetros de qualidade e métodos analíticos. Química Nova 32(6), 1596-1608. https://doi.org/10.1590/S0100-40422009000600044

Menezes, F. B. J., & Bernardo, A. N. (2017). Biodisel No Ceará: Uma perspectiva desenvolvimentista e divulgatória. Revista Gestão & Sustentabilidade Ambiental 6(1), 233-250. http://dx.doi.org/10.19177/rgsa.v6e12017233-250

Moreto, E., & Alves, R. F. (1986). Óleos e gorduras vegetais: processamento e análises. Florianópolis: Editora da UFSC.

Oliveira, D. S., Fonseca, X. D. S., Farias, P. N., Bezerra, V. S., Pinto, C. H. C., Souza, L. D., Santos, A. G. D., & Matias, L. G. O. (2012). Obtenção do biodiesel através da transesterificação do óleo de Moringa Oleífera Lam. Holos 28(1), 49-61. https://doi.org/10.15628/holos.2012.803

Parente, J. S. E. (2003). Biodiesel, o livro: Aventura tecnológica num país engraçado. Fortaleza: Tecbio.

Oliveira, C. Y. B., D'alessandro, E. B., Antoniosi Filho, N. R., Lopes, R. G., & Derner, R. B. (2021). Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Science of the Total Environment 759, e143476. https://doi.org/10.1016/j.scitotenv.2020.143476

Oliveira Junior, J., Konradt-Moraes, L. C., Castro, T. L. A., & Santos, M. S. M. (2021). Produção de biodiesel com Salvinia auriculata cultivada com biossólidos ou vinhaça. In: Maziero, R. (Org.), Engenharias: Tendências e Inovações (Chap. 10, pp.117-128). Belo Horizonte: Synapse Editora.

Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Sales, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2019). Production of biodiesel from castor oil: A review. Energies 13(10), e2467. https://doi.org/10.3390/en13102467

Ozcanli, M., Akar, M. A., Calik, A., & Serin, H. (2017). Using HHO (Hydroxy) and hydrogen enriched castor oil biodiesel in compression ignition engine. International Journal of Hydrogen Energy 42(36), 23366-23372. https://doi.org/10.1016/j.ijhydene.2017.01.091

Postaue, N., Konradt-Moraes, L. C., & Asmus, R. M. F. (2019). Chorume como fonte de nutriente na produção da biomassa microalgal. Revista E-Xacta 12(2), 11-19. https://doi.org/10.18674/exacta.v12i2.2746

Rana, M., Dhamija, H., Prashar, B., & Sharma, S. (2012). Ricinus communis L. – A Review. International Journal of PharmTech Research 4(4), 1706-1711. Recuperado de https://sphinxsai.com/2012/oct-dec/Pharmpdf/PT=48(1706-1711)OD12.pdf

Rizzardo, R. A. G., Milfont, M. O., Silva, S. E. M., & Freitas, B. M. (2012). Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis). Anais da Academia Brasileira de Ciências 84(4), 1137-1145. https://doi.org/10.1590/S0001-37652012005000057

Rovere, B. O., Rodrigues, J. H., & Teleken, J. G. (2020). Redução do índice de acidez através da neutralização e esterificação para produção de biodiesel. Brazilian Journal of Development 6(5), 24678-24686. https://doi.org/10.34117/bjdv6n5-064

Souta, M. J., Simionatto, E. L., Schar f, D. R., Motta, V., Moser, D., Oliveira, L. B., Pedroso, L. R. M., Wisniewski Junior, A., Wiggers, V. R., Botton, V., & Meier, H. F. (2018). Avaliação de características de biodieseis de fontes alternativas submetidos a condições de armazenagem diferenciada. Química nova 41(6), 648-655. http://dx.doi.org/10.21577/0100-4042.20170222

Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology 24, e101514. https://doi.org/10.1016/j.bcab.2020.101514

Singh, D., Sharma, D., Soni, S. L., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 253, 60-71. https://doi.org/10.1016/j.fuel.2019.04.174

Silva, C. C. M., & Fonseca, G. G. (2021). Avaliação de técnicas de refino de óleo reciclado para a produção biodiesel. Brazilian Journal of Production Engineering 7(2), 169-176. https://doi.org/10.47456/bjpe.v7i2.35513

Silva, C. C. M., Carvalho, N. L. C., & Fonseca, G. G. (2021). Indústrias produtoras de biodiesel: destinação correta aos efluentes através de implantação de políticas de produção mais limpa (P+L). Recima21 – Revista científica multidisciplinar 2(4), e24265. https://doi.org/10.47820/recima21.v2i4.265

Silva, G. C. R., & Andrade, M. H. C. (2020). Criação de banco de dados para simulação da produção de biodiesel. parte 2: Estimativa de propriedades termofísicas do biodiesel. The Journal of Engineering and Exact Sciences 6(2), 179-188. https://doi.org/10.18540/jcecvl6iss2pp0179-0188

Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262, e116553. https://doi.org/10.1016/j.fuel.2019.116553

Tabile, R. A., Lopes, A., Dabdoub, M. J., Camara, F. T., Furlani, C. E. A., & Silva, R. P. (2009). Biodiesel de mamona no diesel interior e metropolitano em trator agrícola. Engenharia Agrícola 29(3), 412-423. https://doi.org/10.1590/S0100-69162009000300008

Tat, M. E., & Van Gerpen, J. H. (1999). The kinematic viscosity of biodiesel and its blends with diesel fuel. Journal of the American Oil Chemists' Society 76, 1511-1513. https://doi.org/10.1007/s11746-999-0194-0

Torrentes-Espinoza, G., Miranda, B. C., Vega-Baudrit, J., & Mata-Segreda, J. F. (2017) Castor oil (Ricinus communis) supercritical methanolysis. Energy 140, 426-435. http://dx.doi.org/10.1016/j.energy.2017.08.122

Ventura, D. A. M. F., Alves, K. B., & Santos, M. K. V. A. (2010). Análise comparativa entre o biodiesel de girassol e o biodiesel de mamona. In: IV Congresso Brasileiro de Mamona e I Simpósio Internacional de Oleaginosas Energéticas, João Pessoa, 2010.

Ventura, M., Deus, W. B., Silva, J. R., Andrade, L. H. C., Catunda, T., & Lima, S. M. (2018). Determination of the biodiesel content in diesel/biodiesel blends by using the near-near-infrared thermal lens spectroscopy. Fuel 212, 309-314. https://doi.org/10.1016/j.fuel.2017.10.069

Vieira, B., Nadaleti, W. C., & Sarto, E. (2021). The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification. Renewable Energy 165, 657-667. https://doi.org/10.1016/j.renene.2020.10.056

Zuniga, A. D. G., Paula, M. M., Coimbra, J. S. R., Martins, E. C. A., Silva, D. X., & Telis-Romero, J. (2011). Revisão: Propriedades Físico-Químicas do Biodiesel. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente 21, 55-72. http://dx.doi.org/10.5380/pes.v21i0.25939

Published

2021-09-16

How to Cite

Silva, C. C. M. da, Moraes, L. C. K., Santos Júnior, J. R. dos, & Castro, T. L. A. de. (2021). Viscosity reduction of Ricinus communis L. (MAMONA) biodiesel by chemical acetylation. Brazilian Journal of Production Engineering, 7(3), 182–198. https://doi.org/10.47456/bjpe.v7i3.35894

Issue

Section

ENVIRONMENTAL ENGINEERING AND SUSTAINABILITY