Análise do desempenho energético e exegético de acordo com a temperatura de evaporação de um chiller de compressão de vapor

Authors

DOI:

https://doi.org/10.47456/bjpe.v10i3.44651

Keywords:

Chiller de compressão de parafuso, Eficiência energética, Eficiência exergética, Temperatura de evaporação

Abstract

Este artigo apresenta uma análise de eficiência energética e exergética de um sistema de refrigeração de água gelada de grande porte, um chiller, integrado a uma central de água gelada projetada para suprir a carga térmica necessária para a refrigeração do ar de um grande shopping localizado na capital do estado da Paraíba, Brasil. O chiller estudado utiliza um compressor do tipo parafuso, que opera com um motor elétrico para aumentar a pressão em uma fase do ciclo termodinâmico, resultando em um consumo significativo de energia, especialmente em operações contínuas e sob carga elevada. O estudo se concentra na redução do consumo de energia elétrica ao avaliar e identificar melhorias na operação do sistema, com base no comportamento energético e exergético. Para alcançar esse objetivo, foram realizadas simulações numéricas utilizando o software Engineering Equation Solver (EES), que permitiram representar e otimizar o funcionamento do sistema.  Além disso, o artigo apresenta dados detalhados do ciclo de refrigeração do chiller em estudo, essenciais para compreender o funcionamento do equipamento. Os resultados indicam que o evaporador teve a maior perda de exergia, porém  reduzível ao aumentar a temperatura de evaporação, melhorando a eficiência global da unidade de refrigeração e reduzindo o consumo de energia elétrica.

Downloads

Download data is not yet available.

Author Biographies

Carlos Eduardo da Silva Albuquerque, Universidade Federal do Vale do São Francisco, Colegiado de Engenharia de produção, Campus Salgueiro-PE

PhD in Materials Science and Engineering, a master's degree in Mechanical Engineering, and a bachelor's degree in Mechanical Engineering, all from the Federal University of Campina Grande. His research focuses on metallurgical processes, with an emphasis on rapid precision casting and thermophysical processes using numerical simulation. He has also conducted previous research on energy and exergy analysis for process improvement and multiphase fluid flow. In academia, he works as a tenured professor in the Production Engineering program at the Federal University of Vale do São Francisco, where he is responsible for teaching courses in the field of mechanics.

Celso Rosendo Bezerra Filho, Universidade Federal de Campina Grande

Holds a bachelor's degree in Mechanical Engineering from the Federal University of Paraíba (1985), a master's degree in Mechanical Engineering from the Federal University of Paraíba (1988), and a PhD in Thermal Engineering from the National Institute of Applied Sciences of Lyon (1998). Currently, he is a full professor at the Federal University of Campina Grande. He has experience in the field of Mechanical Engineering, with an emphasis on Heat Transfer and Thermodynamics, mainly focusing on the following topics: periodic regime, heat transfer, thermal diffusivity, contact resistance, and thermodynamic analysis of internal combustion engines.

 

Thays Nogueira Rodrigues, Centro Universitário Paraíso, Departamento de Engenharia Civil

PhD candidate in Civil and Environmental Engineering at the Federal University of Campina Grande, with a research focus on Pavement Mechanics and Management. Holds a master's degree in Civil and Environmental Engineering from the Federal University of Campina Grande, with a concentration in Geotechnics (2017). Graduated in Civil Engineering from the Federal University of Campina Grande (2015). Currently works as a professor at the Paraíso University Center (UniFAP) in the Civil Engineering and Architecture and Urbanism programs, developing research and supervising projects related to the Transportation Project Evaluation research line.

Maria Deise Calou Leite, Centro Universitário Paraíso, Departamento de Engenharia Civil

Undergraduate student in Civil Engineering at the Paraíso University Center (UNIFAP). FIES scholarship holder. Conducts research on pavement under the guidance of Professor Thays Nogueira Rodrigues.

References

Afram, A. & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343-355. https://doi.org/10.1016/j.buildenv.2013.11.016

Al-Qazzaz, A. H. S., Farzaneh-Gord, M., & Niazmand, H. (2024). Energy and exergy analysis with environment benefit of the underground cooling system of the chiller plant. Results in Engineering, 22, 101952. https://doi.org/10.1016/j.rineng.2024.101952

Carrier. (2008, julho). Manual de instalação, operação e manutenção Chiller EVERGREEN 23XRV. Recuperado de http://www.carrierdobrasil.com.br/modelo/downloads/meu-negocio/32/aquaedge-23xrv

Cavalcante, A. M. C. C., & Moreira, H. L. (2016). Análise exergética comparativa entre duas unidades de refrigeração por compressão de vapor de um shopping center localizado em Teresina-PI. Artigo publicado no CONEM. https://doi.org/10.20906/CPS%2FCON-2016-0930

CEEETA, Centro de Estudos em Economia da Energia, dos Transportes e do Ambiente. (2001, dezembro). Tecnologias de micro-geração e sistemas periféricos. Parte II – Tecnologias de aproveitamento de calor.

Çengel, Y. A., & Boles , M. A. (2013). Termodinâmica (8ª ed.). Porto Alegre: McGraw-Hill Education.

Chumioque, J. J. R. (2004). Simulação de um sistema de refrigeração com termoacumulação operando em regime transiente (Dissertação de mestrado). Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Deymi-Dashtebayaz, M., Farahnak, M., Nazeri Boori Abadi, R., (2019). Energy saving and environmental impact of optimizing the number of condenser fans in centrifugal chillers under partial load operation. International Journal of Refrigeration, 103, 163-179. https://doi.org/10.1016/j.ijrefrig.2019.03.020

Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225. https://doi.org/10.1016/j.enbuild.2020.110322

EPE, Empresa de Pesquisa Energética. (2023). Atlas da Eficiência Energética Brasil 2023. Recuperado de https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-788/Atlas%20da%20Efici%C3%AAncia%20Energ%C3%A9tica%20Brasil%202023.pdf

Ismail, M. & Hamdy, H. (2024). Influence of coupling air conditioner with hybrid PCMs on building interior conditions and consumed power: Experimental investigation. Energy and Buildings, 310, 114112.

https://doi.org/10.1016/j.enbuild.2024.114112

International Energy Agency (IEA). (2018). The Future of Cooling: Opportunities for energy-efficient air conditioning. IEA Publications. Website:https://www.iea.org/reports/the-future-of-cooling

Iqbal, M. T., Tariq, A., Anis, A., & Ahn, J. (2022). Comparative exergoeconomic and exergoenvironmental analyses of two air conditioning systems using R32 and R410A refrigerants. Energy Conversion and Management, 255, 114415. https://doi.org/10.1016/j.enconman.2022.114415

Jiang, S., Wang, S. G., & Jin, X. (2018). Numerical research on coupling performance of inter-stage parameters for two-stage compression system with injection. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.09.126

Li, X., Zhang, Y., Zhang, X., & Wang, R. (2020). Exergy analysis and optimization of a CO2 transcritical refrigeration system with parallel compression and ejector expansion. Energy, 210, 118545. https://doi.org/10.1016/j.energy.2020.118545

Lombard, L. P., Ortiz, J., & Maestre, I. R. (2011). The map of energy flow in HVAC systems. Applied Energy, 88(12), 5024-5031

https://doi.org/10.1016/j.apenergy.2011.07.003

Lyu, W., Wang, Z., Li, X., Xin, X., Chen, S., Yang, Y., Xu, Z., Yang, Q., Li, H. (2022). Energy efficiency and economic analysis of utilizing magnetic bearing chillers for the cooling of data centers. Journal of Building Engineering, 48, 103920. https://doi.org/10.1016/j.jobe.2021.103920

Mahdi, D.-D., Mehdi, F., & Reza, N. B. A. (2019). Energy saving and environmental impact of optimizing the number of condenser fans in centrifugal chillers under partial load operation. International Journal of Refrigeration, 103, 163-179. https://doi.org/10.1016/j.ijrefrig.2019.03.020

Massuchetto, L.H.P., do Nascimento, R.B.C., de Carvalho, S.M.R., de Araujo, H.V. (2019). Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717, and R744/RE170. International Journal of Refrigeration, 106, 201-212. https://doi.org/10.1016/j.ijrefrig.2019.07.005

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2018). Princípios de termodinâmica para engenharia. LTC.

Qin, Y., Li, N., Zhang, H., & Liu, B. (2021). Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants. Energy Conversion and Management, 236, 114093.

https://doi.org/10.1016/j.enconman.2021.114093

Rad, E. A., & Maddah, S. (2019). Entropic optimization of the economizer’s pressure in a heat pump cycle integrated with a flash-tank and vapor-injection system. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2018.09.018

Rodriguez-Jara, E.A., Sanchez-de-la-Flor, F.J., Expósito-Carrillo, J.A., & Salmeron-Lissen, J.M. (2022). Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150. Applied Thermal Engineering, 200, 117598. https://doi.org/10.1016/j.applthermaleng.2021.117598

Ruz, M. L., Garrido, J., Vázquez, F., & Morilla, F. (2017). A hybrid modeling approach for steady-state optimal operation of vapor compression refrigeration cycles. Applied Thermal Engineering, 120, 74-87. https://doi.org/10.1016/j.applthermaleng.2017.03.103

Sathtasivam, J., Tang, G., & Ng, K. C. (2010). Evaluation of the simple thermodynamic model (Gordon and Ng universal chiller model) as a fault detection and diagnosis tool for on-site centrifugal chillers. International Journal of Air-Conditioning and Refrigeration. https://doi.org/10.1142/S2010132510000071

Torío, H., Angelotti, A., & Schmidt, D. (2009). Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view. Energy and Buildings, 41. https://doi.org/10.1016/j.enbuild.2008.10.006

Walker, G., Shove, E., & Brown, S. (2014). How does air conditioning become ‘needed’? A case study of routes rationales and dynamics. Energy Research & Social Science, 4, 1-9.

https://doi.org/10.1016/j.erss.2014.08.002

Wang, S. K. (2001). Handbook of air conditioning and refrigeration (2ª ed.). Editora McGraw-Hill.

Wei, W. Z., Ni, L., Zhou, C. H., Yao, Y., Xu, L. F., & Yang, Y. H. (2020). Performance analysis of a quasi-two stage compression air source heat pump in severe cold region with a new control strategy. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2020.115317

Yang, L. & Yuan, X. (2013). A numerical study on the performance of a ground-coupled heat pump system in a hot and humid area. Energy and Buildings, 65, 101-110. https://doi.org/10.1016/j.enbuild.2013.06.018

Published

2024-08-08

How to Cite

Albuquerque, C. E. da S., Bezerra Filho, C. R., Rodrigues, T. N., & Leite, M. D. C. (2024). Análise do desempenho energético e exegético de acordo com a temperatura de evaporação de um chiller de compressão de vapor. Brazilian Journal of Production Engineering, 10(3), 256–272. https://doi.org/10.47456/bjpe.v10i3.44651