Análisis del desempeño energético y exergético según la temperatura de evaporación de un enfriador por compresión de vapor

Autores/as

DOI:

https://doi.org/10.47456/bjpe.v10i3.44651

Palabras clave:

Chiller com compressor de tornillo, Eficiencia energética, Eficiencia exergética, Temperatura de evaporación

Resumen

Este artículo presenta un análisis de eficiencia energética y exergética de un sistema de refrigeración de agua helada de gran tamaño, un chiller, integrado en una central de agua helada diseñada para suplir la carga térmica necesaria para la refrigeración del aire de un gran centro comercial ubicado en la capital del estado de Paraíba, Brasil. El chiller estudiado utiliza un compresor del tipo tornillo, que opera con un motor eléctrico para aumentar la presión en una fase del ciclo termodinámico, resultando en un consumo significativo de energía, especialmente en operaciones continuas y bajo carga elevada. El estudio se concentra en la reducción del consumo de energía eléctrica al evaluar e identificar mejoras en la operación del sistema, basándose en el comportamiento energético y exergético. Para alcanzar este objetivo, se realizaron simulaciones numéricas utilizando el software Engineering Equation Solver (EES), que permitieron representar y optimizar el funcionamiento del sistema. Además, el artículo presenta datos detallados del ciclo de refrigeración del chiller en estudio, esenciales para comprender el funcionamiento del equipo. Los resultados indican que el evaporador tuvo la mayor pérdida de exergía, pero esta se puede reducir aumentando la temperatura de evaporación, mejorando la eficiencia global de la unidad de refrigeración y reduciendo el consumo de energía eléctrica.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Eduardo da Silva Albuquerque, Universidade Federal do Vale do São Francisco, Colegiado de Engenharia de produção, Campus Salgueiro-PE

Possui doutorado em Ciência e Engenharia de Materiais, mestrado em Engenharia Mecânica e graduação em Engenharia Mecânica, todos obtidos na Universidade Federal de Campina Grande. Seu foco de pesquisa está em processos metalúrgicos, com ênfase em fundição de precisão rápida e processos termofísicos utilizando simulação numérica. Também realizou pesquisas anteriores em análise de energia e exergia para melhoria de processos e escoamento de fluidos multifásicos. Na área acadêmica, atua como professor efetivo no curso de Engenharia de Produção na Universidade Federal do Vale do São Francisco, sendo responsável por ministrar disciplinas da área da mecânica

Celso Rosendo Bezerra Filho, Universidade Federal de Campina Grande

Possui graduação em Engenharia Mecânica pela Universidade Federal da Paraíba (1985), mestrado em Engenharia Mecânica pela Universidade Federal da Paraíba (1988) e doutorado em Génie Thermique - Institut National Des Sciences Appliquées de Lyon (1998). Atualmente é professor titular da Universidade Federal de Campina Grande. Tem experiência na área de Engenharia Mecânica, com ênfase em Transferência de Calor e Termodinâmica, atuando principalmente nos seguintes temas: regime periódico, transferência de calor, difusividade térmica, resistência de contato e análise termodinâmica de motores de combustão interna.

Thays Nogueira Rodrigues, Centro Universitário Paraíso, Departamento de Engenharia Civil

Doutoranda em Engenharia Civil e Ambiental na Universidade Federal de Campina Grande, com linha de pesquisa em Mecânica e Gerência de Pavimentos. Mestre em Engenharia Civil e Ambiental pela Universidade Federal de Campina Grande, na área de concentração em Geotecnia (2017). Graduada em Engenharia Civil pela Universidade Federal de Campina Grande (2015). Atualmente atua como professora no Centro Universitário Paraíso (UniFAP) nos cursos de Engenharia Civil e Arquitetura e Urbanismo, desenvolvendo pesquisas e orientações com temas relacionados a linha de pesquisa de Avaliação de Projeto de Transportes. 

Maria Deise Calou Leite, Centro Universitário Paraíso, Departamento de Engenharia Civil

Graduanda em Engenharia Civil pelo Centro Universitário Paraíso - UNIFAP. Bolsista FIES. desenvolve pesquisas sobre pavimentação sobre orientação da professora Thays Nogueira Rodrigues.

Citas

Afram, A. & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343-355. https://doi.org/10.1016/j.buildenv.2013.11.016 DOI: https://doi.org/10.1016/j.buildenv.2013.11.016

Al-Qazzaz, A. H. S., Farzaneh-Gord, M., & Niazmand, H. (2024). Energy and exergy analysis with environment benefit of the underground cooling system of the chiller plant. Results in Engineering, 22, 101952. https://doi.org/10.1016/j.rineng.2024.101952 DOI: https://doi.org/10.1016/j.rineng.2024.101952

Carrier. (2008, julho). Manual de instalação, operação e manutenção Chiller EVERGREEN 23XRV. Recuperado de http://www.carrierdobrasil.com.br/modelo/downloads/meu-negocio/32/aquaedge-23xrv

Cavalcante, A. M. C. C., & Moreira, H. L. (2016). Análise exergética comparativa entre duas unidades de refrigeração por compressão de vapor de um shopping center localizado em Teresina-PI. Artigo publicado no CONEM. https://doi.org/10.20906/CPS%2FCON-2016-0930

CEEETA, Centro de Estudos em Economia da Energia, dos Transportes e do Ambiente. (2001, dezembro). Tecnologias de micro-geração e sistemas periféricos. Parte II – Tecnologias de aproveitamento de calor.

Çengel, Y. A., & Boles , M. A. (2013). Termodinâmica (8ª ed.). Porto Alegre: McGraw-Hill Education.

Chumioque, J. J. R. (2004). Simulação de um sistema de refrigeração com termoacumulação operando em regime transiente (Dissertação de mestrado). Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Deymi-Dashtebayaz, M., Farahnak, M., Nazeri Boori Abadi, R., (2019). Energy saving and environmental impact of optimizing the number of condenser fans in centrifugal chillers under partial load operation. International Journal of Refrigeration, 103, 163-179. https://doi.org/10.1016/j.ijrefrig.2019.03.020

Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225. https://doi.org/10.1016/j.enbuild.2020.110322 DOI: https://doi.org/10.1016/j.enbuild.2020.110322

EPE, Empresa de Pesquisa Energética. (2023). Atlas da Eficiência Energética Brasil 2023. Recuperado de https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-788/Atlas%20da%20Efici%C3%AAncia%20Energ%C3%A9tica%20Brasil%202023.pdf

Ismail, M. & Hamdy, H. (2024). Influence of coupling air conditioner with hybrid PCMs on building interior conditions and consumed power: Experimental investigation. Energy and Buildings, 310, 114112.

https://doi.org/10.1016/j.enbuild.2024.114112 DOI: https://doi.org/10.1016/j.enbuild.2024.114112

International Energy Agency (IEA). (2018). The Future of Cooling: Opportunities for energy-efficient air conditioning. IEA Publications. Website:https://www.iea.org/reports/the-future-of-cooling

Iqbal, M. T., Tariq, A., Anis, A., & Ahn, J. (2022). Comparative exergoeconomic and exergoenvironmental analyses of two air conditioning systems using R32 and R410A refrigerants. Energy Conversion and Management, 255, 114415. https://doi.org/10.1016/j.enconman.2022.114415

Jiang, S., Wang, S. G., & Jin, X. (2018). Numerical research on coupling performance of inter-stage parameters for two-stage compression system with injection. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.09.126 DOI: https://doi.org/10.1016/j.applthermaleng.2017.09.126

Li, X., Zhang, Y., Zhang, X., & Wang, R. (2020). Exergy analysis and optimization of a CO2 transcritical refrigeration system with parallel compression and ejector expansion. Energy, 210, 118545. https://doi.org/10.1016/j.energy.2020.118545 DOI: https://doi.org/10.1016/j.energy.2020.118545

Lombard, L. P., Ortiz, J., & Maestre, I. R. (2011). The map of energy flow in HVAC systems. Applied Energy, 88(12), 5024-5031

https://doi.org/10.1016/j.apenergy.2011.07.003 DOI: https://doi.org/10.1016/j.apenergy.2011.07.003

Lyu, W., Wang, Z., Li, X., Xin, X., Chen, S., Yang, Y., Xu, Z., Yang, Q., Li, H. (2022). Energy efficiency and economic analysis of utilizing magnetic bearing chillers for the cooling of data centers. Journal of Building Engineering, 48, 103920. https://doi.org/10.1016/j.jobe.2021.103920 DOI: https://doi.org/10.1016/j.jobe.2021.103920

Mahdi, D.-D., Mehdi, F., & Reza, N. B. A. (2019). Energy saving and environmental impact of optimizing the number of condenser fans in centrifugal chillers under partial load operation. International Journal of Refrigeration, 103, 163-179. https://doi.org/10.1016/j.ijrefrig.2019.03.020 DOI: https://doi.org/10.1016/j.ijrefrig.2019.03.020

Massuchetto, L.H.P., do Nascimento, R.B.C., de Carvalho, S.M.R., de Araujo, H.V. (2019). Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717, and R744/RE170. International Journal of Refrigeration, 106, 201-212. https://doi.org/10.1016/j.ijrefrig.2019.07.005 DOI: https://doi.org/10.1016/j.ijrefrig.2019.07.005

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2018). Princípios de termodinâmica para engenharia. LTC.

Qin, Y., Li, N., Zhang, H., & Liu, B. (2021). Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants. Energy Conversion and Management, 236, 114093.

https://doi.org/10.1016/j.enconman.2021.114093 DOI: https://doi.org/10.1016/j.enconman.2021.114093

Rad, E. A., & Maddah, S. (2019). Entropic optimization of the economizer’s pressure in a heat pump cycle integrated with a flash-tank and vapor-injection system. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2018.09.018 DOI: https://doi.org/10.1016/j.ijrefrig.2018.09.018

Rodriguez-Jara, E.A., Sanchez-de-la-Flor, F.J., Expósito-Carrillo, J.A., & Salmeron-Lissen, J.M. (2022). Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150. Applied Thermal Engineering, 200, 117598. https://doi.org/10.1016/j.applthermaleng.2021.117598 DOI: https://doi.org/10.1016/j.applthermaleng.2021.117598

Ruz, M. L., Garrido, J., Vázquez, F., & Morilla, F. (2017). A hybrid modeling approach for steady-state optimal operation of vapor compression refrigeration cycles. Applied Thermal Engineering, 120, 74-87. https://doi.org/10.1016/j.applthermaleng.2017.03.103 DOI: https://doi.org/10.1016/j.applthermaleng.2017.03.103

Sathtasivam, J., Tang, G., & Ng, K. C. (2010). Evaluation of the simple thermodynamic model (Gordon and Ng universal chiller model) as a fault detection and diagnosis tool for on-site centrifugal chillers. International Journal of Air-Conditioning and Refrigeration. https://doi.org/10.1142/S2010132510000071 DOI: https://doi.org/10.1142/S2010132510000071

Torío, H., Angelotti, A., & Schmidt, D. (2009). Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view. Energy and Buildings, 41. https://doi.org/10.1016/j.enbuild.2008.10.006 DOI: https://doi.org/10.1016/j.enbuild.2008.10.006

Walker, G., Shove, E., & Brown, S. (2014). How does air conditioning become ‘needed’? A case study of routes rationales and dynamics. Energy Research & Social Science, 4, 1-9.

https://doi.org/10.1016/j.erss.2014.08.002 DOI: https://doi.org/10.1016/j.erss.2014.08.002

Wang, S. K. (2001). Handbook of air conditioning and refrigeration (2ª ed.). Editora McGraw-Hill.

Wei, W. Z., Ni, L., Zhou, C. H., Yao, Y., Xu, L. F., & Yang, Y. H. (2020). Performance analysis of a quasi-two stage compression air source heat pump in severe cold region with a new control strategy. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2020.115317 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115317

Yang, L. & Yuan, X. (2013). A numerical study on the performance of a ground-coupled heat pump system in a hot and humid area. Energy and Buildings, 65, 101-110. https://doi.org/10.1016/j.enbuild.2013.06.018 DOI: https://doi.org/10.1016/j.enbuild.2013.06.018

Publicado

2024-08-08

Cómo citar

Albuquerque, C. E. da S., Bezerra Filho, C. R., Rodrigues, T. N., & Leite, M. D. C. (2024). Análisis del desempeño energético y exergético según la temperatura de evaporación de un enfriador por compresión de vapor. Brazilian Journal of Production Engineering, 10(3), 256–272. https://doi.org/10.47456/bjpe.v10i3.44651