Study of the effect of filling combination on impact energy absorption of parts manufactured in pla using cast filament manufacturing

Authors

DOI:

https://doi.org/10.47456/bjpe.v10i3.44945

Keywords:

Fused Filament Fabrication, Mesostructure, hybrid infill, Charpy test

Abstract

Filament Fusion Manufacturing (FFF) is one of the most widespread additive manufcturing technologies. However, printed parts often have lower reliability compared to those produced by traditional manufacturing processes. Therefore, investigating the mechanical behavior of these parts is an important research topic and common interest among academics and manufacturers. This study proposes a new approach to design the internal structure of parts, combining two distinct regions with different fillings. The objective was to investigate the behavior of this new mesostructure on the toughness of the parts. For this, two sets of PLA test specimens were manufactured. The first built with single fill and the second with hybrid fill. The specimens were tested by Charpy Impact according to ASTM D6110-10. The results analyzed by ANOVA and the microstructure by optical micrographs. The use of the hybrid resource proved to be efficient in increasing toughness for fill densities of 20%. For samples with fill density above 50%, the increase in toughness was not significant, as printing time and material consumption for manufacturing increased. In situations where lighter structures with greater resistance to impact are desired, the use of hybrid filling has significant relevance.

Downloads

Download data is not yet available.

Author Biographies

Fabiano Oscar Drozda, Universidade Federal do Paraná

Doutor em Engenharia Mecânica pela UFPR

Ricardo Junior de Oliveira Silva, Universidade Federal do Paraná

Mestre em Engenharia de Produção pela UFPR.

Davi Salvini Chixaro, Universidade Federal do Paraná

Mestre em Engenharia de Produção - UFPR

Dayane Perez Bravo, UNINTER Centro Universitário Internacional

Mestrado em Métodos Numéricos em Engenharia

References

Chyr, G. & DeSimone, J. M. (2023). Review of high-performance sustainable polymers in additive manufacturing. Green Chemistry, 25(2), 453-466. https://doi.org/10.1039/D2GC03474C DOI: https://doi.org/10.1039/D2GC03474C

Reverte, J. M., Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., & Becar, J. P. (2020). Mechanical and geometric performance of PLA-based polymer composites processed by the fused filament fabrication additive manufacturing technique. Materials, 13(8), 1924. https://doi.org/10.3390/ma13081924 DOI: https://doi.org/10.3390/ma13081924

Fico, D., Rizzo, D., Casciaro, R., & Esposito Corcione, C. (2022). A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers, 14(3), 465. https://doi.org/10.3390/polym14030465 DOI: https://doi.org/10.3390/polym14030465

Bhatia, A. & Sehgal, A. K. (2023). Additive manufacturing materials, methods and applications: A review. Materials Today: Proceedings, 81, 1060-1067. https://doi.org/10.1016/j.matpr.2021.04.379 DOI: https://doi.org/10.1016/j.matpr.2021.04.379

Zanjanijam, A. R., Major, I., Lyons, J. G., Lafont, U., & Devine, D. M. (2020). Fused filament fabrication of peek: A review of process-structure-property relationships. Polymers, 12(8), 1665. doi: 10.3390/polym12081665 DOI: https://doi.org/10.3390/polym12081665

Jatti, V. S., Sapre, M. S., Jatti, A. V., Khedkar, N. K., & Jatti, V. S. (2022). Mechanical properties of 3D-printed components using fused deposition modeling: optimization using the desirability approach and machine learning regressor. Applied System Innovation, 5(6), 112. https://doi.org/10.3390/asi5060112 DOI: https://doi.org/10.3390/asi5060112

Hozdić, E. (2024). Characterization and Comparative Analysis of Mechanical Parameters of FDM-and SLA-Printed ABS Materials. Applied Sciences, 14(2), 649. https://doi.org/10.3390/app14020649 DOI: https://doi.org/10.3390/app14020649

Gao, X., Qi, S., Kuang, X., Su, Y., Li, J., & Wang, D. (2021). Fused filament fabrication of polymer materials: A review of interlayer bond. Additive Manufacturing, 37, 101658. https://doi.org/10.1016/j.addma.2020.101658 DOI: https://doi.org/10.1016/j.addma.2020.101658

Tanveer, M. Q., Suhaib, M., & Haleem, A. (2020). A New 3D Benchmarking Artifact to Evaluate Dimensional Accuracy and Geometric Tolerancing of Additive Manufacturing Technique. In Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019 (pp. 261-273). Springer Singapore. https://doi.org/10.1007/978-981-15-1071-7_22 DOI: https://doi.org/10.1007/978-981-15-1071-7_22

Mishra, P. K., Senthil, P., Adarsh, S., & Anoop, M. S. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, 24, 100605. https://doi.org/10.1016/j.coco.2020.100605 DOI: https://doi.org/10.1016/j.coco.2020.100605

Patterson, A. E., Pereira, T. R., Allison, J. T., & Messimer, S. L. (2019). IZOD impact properties of full-density FDM polymer materials with respect to raster angle and print orientation. Proceedings of IMECHE Part C. J. Mech. Eng. Sci, 1-13. http://dx.doi.org/10.1177/0954406219840385 DOI: https://doi.org/10.1177/0954406219840385

Mustafa, M. S., Muneer, M. A., Zafar, M. Q., Arif, M., Hussain, G., & Siddiqui, F. A. (2022). Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend. International Polymer Processing, 37(1), 1-14. http://dx.doi.org/10.1515/ipp-2021-4115 DOI: https://doi.org/10.1515/ipp-2021-4115

Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006

Ahmed, M., Islam, M. R., Vanhoose, J., Hewavitharana, L., Stanich, A., & Hossain, M. (2016, November). Comparisons of Bending Stiffness of 3D Printed Samples of Different Materials. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50633, p. V009T12A023). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/IMECE2016-65119 DOI: https://doi.org/10.1115/IMECE2016-65119

Messimer, S. L., Rocha Pereira, T., Patterson, A. E., Lubna, M., & Drozda, F. O. (2019). Full-density fused deposition modeling dimensional error as a function of raster angle and build orientation: Large dataset for eleven materials. Journal of Manufacturing and Materials Processing, 3(1), 6. https://doi.org/10.3390/jmmp3010006 DOI: https://doi.org/10.3390/jmmp3010006

Baptista, R., Guedes, M., Pereira, M. F. C., Maurício, A., Carrelo, H., & Cidade, T. (2020). On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds. Bioprinting, 20, e00096. https://doi.org/10.3390/jmmp3010006 DOI: https://doi.org/10.1016/j.bprint.2020.e00096

Şahin, İ., Top, N., & Bülbül, R. (2021). Effect of Infill Density and Infill Pattern on Mechanical Properties in Fused Deposition Modeling (FDM). Innovative Approaches in Additive Manufacturing Congress (IA4AM), Ankara, Türkiye, ss.65-74.

Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119-2127.

https://doi.org/10.1016/j.matpr.2021.09.433 DOI: https://doi.org/10.1016/j.matpr.2021.09.433

Zisopol, D. G., Ion, N., & Portoaca, A. I. (2023). Comparison of the Charpy Resilience of Two 3D Printed Materials: A Study on the Impact Resistance of Plastic Parts. Engineering, Technology & Applied Science Research, 13(3), 10781-10784. https://doi.org/10.48084/etasr.5876 DOI: https://doi.org/10.48084/etasr.5876

Tanveer, M. Q., Haleem, A., & Suhaib, M. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Applied Sciences, 1, 1-12. https://doi.org/10.1007/s42452-019-1744-1 DOI: https://doi.org/10.1007/s42452-019-1744-1

Giri, J., Chiwande, A., Gupta, Y., Mahatme, C., & Giri, P. (2021). Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Materials Today: Proceedings, 47, 5856-5861. https://doi.org/10.1016/j.matpr.2021.04.283 DOI: https://doi.org/10.1016/j.matpr.2021.04.283

Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006 DOI: https://doi.org/10.1016/j.ijlmm.2022.04.006

Marques, J. M. & Marques, M. A. M. (2005). Estatística básica para os cursos de engenharia. Curitiba: Domínio do Saber.

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012 DOI: https://doi.org/10.1016/j.addr.2016.06.012

Published

2024-08-12

How to Cite

Drozda, F. O., Silva, R. J. de O., Chixaro, D. S., & Bravo, D. P. (2024). Study of the effect of filling combination on impact energy absorption of parts manufactured in pla using cast filament manufacturing. Brazilian Journal of Production Engineering, 10(3), 285–295. https://doi.org/10.47456/bjpe.v10i3.44945