Estudo do efeito da combinação de preenchimento na absorção de energia de impacto de peças fabricadas em pla utilizando fabricação por filamentos fundidos

Autores

DOI:

https://doi.org/10.47456/bjpe.v10i3.44945

Palavras-chave:

Fabricação por Filamento fundido, mesoestrutura;, preenchimento híbrido, teste Charpy

Resumo

A Fabricação por Fusão de Filamento (FFF) é uma das tecnologias de manufatura aditiva mais difundidas. No entanto, as peças impressas muitas vezes são menos confiáveis quando comparadas com aquelas produzidas por processos tradicionais de fabricação devido à variabilidade na qualidade das impressões e a possíveis imperfeições introduzidas durante o processo de impressão. Portanto, investigar o comportamento mecânico destas peças é um importante tópico de pesquisa e comum interesse entre acadêmicos e fabricantes. Este estudo propõe uma nova abordagem para projetar a estrutura interna das peças, combinando duas regiões distintas com diferentes preenchimentos. O objetivo deste estudo foi investigar o comportamento dessa nova mesoestrutura na tenacidade das peças. Para isto, dois conjuntos de corpos de prova em PLA foram fabricados. O primeiro construído com preenchimento único e o segundo com preenchimento híbrido. Os corpos de prova foram testados por Impacto Charpy conforme norma ASTM D6110-10. Os resultados foram analisados por ANOVA e a microestrutura avaliada por microscopia. Os resultados mostraram que o uso do recurso híbrido se mostrou eficiente no aumento da tenacidade para densidades de preenchimento de 20%. Para as amostras com densidade de preenchimento acima de 50%, o aumento na tenacidade não foi significativo, e houve considerável aumento no tempo de impressão e no consumo de material para fabricação também. Em situações em que se deseja estruturas mais leves e com maior resistência ao impacto, o uso do preenchimento híbrido tem significativa relevância.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fabiano Oscar Drozda, Universidade Federal do Paraná

Doutor em Engenharia Mecânica pela UFPR

Ricardo Junior de Oliveira Silva, Universidade Federal do Paraná

Mestre em Engenharia de Produção pela UFPR.

Davi Salvini Chixaro, Universidade Federal do Paraná

Mestre em Engenharia de Produção - UFPR

Dayane Perez Bravo, UNINTER Centro Universitário Internacional

Mestrado em Métodos Numéricos em Engenharia

Referências

Chyr, G. & DeSimone, J. M. (2023). Review of high-performance sustainable polymers in additive manufacturing. Green Chemistry, 25(2), 453-466. https://doi.org/10.1039/D2GC03474C

Reverte, J. M., Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., & Becar, J. P. (2020). Mechanical and geometric performance of PLA-based polymer composites processed by the fused filament fabrication additive manufacturing technique. Materials, 13(8), 1924. https://doi.org/10.3390/ma13081924

Fico, D., Rizzo, D., Casciaro, R., & Esposito Corcione, C. (2022). A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers, 14(3), 465. https://doi.org/10.3390/polym14030465

Bhatia, A. & Sehgal, A. K. (2023). Additive manufacturing materials, methods and applications: A review. Materials Today: Proceedings, 81, 1060-1067. https://doi.org/10.1016/j.matpr.2021.04.379

Zanjanijam, A. R., Major, I., Lyons, J. G., Lafont, U., & Devine, D. M. (2020). Fused filament fabrication of peek: A review of process-structure-property relationships. Polymers, 12(8), 1665. doi: 10.3390/polym12081665

Jatti, V. S., Sapre, M. S., Jatti, A. V., Khedkar, N. K., & Jatti, V. S. (2022). Mechanical properties of 3D-printed components using fused deposition modeling: optimization using the desirability approach and machine learning regressor. Applied System Innovation, 5(6), 112. https://doi.org/10.3390/asi5060112

Hozdić, E. (2024). Characterization and Comparative Analysis of Mechanical Parameters of FDM-and SLA-Printed ABS Materials. Applied Sciences, 14(2), 649. https://doi.org/10.3390/app14020649

Gao, X., Qi, S., Kuang, X., Su, Y., Li, J., & Wang, D. (2021). Fused filament fabrication of polymer materials: A review of interlayer bond. Additive Manufacturing, 37, 101658. https://doi.org/10.1016/j.addma.2020.101658

Tanveer, M. Q., Suhaib, M., & Haleem, A. (2020). A New 3D Benchmarking Artifact to Evaluate Dimensional Accuracy and Geometric Tolerancing of Additive Manufacturing Technique. In Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019 (pp. 261-273). Springer Singapore. https://doi.org/10.1007/978-981-15-1071-7_22

Mishra, P. K., Senthil, P., Adarsh, S., & Anoop, M. S. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, 24, 100605. https://doi.org/10.1016/j.coco.2020.100605

Patterson, A. E., Pereira, T. R., Allison, J. T., & Messimer, S. L. (2019). IZOD impact properties of full-density FDM polymer materials with respect to raster angle and print orientation. Proceedings of IMECHE Part C. J. Mech. Eng. Sci, 1-13. http://dx.doi.org/10.1177/0954406219840385

Mustafa, M. S., Muneer, M. A., Zafar, M. Q., Arif, M., Hussain, G., & Siddiqui, F. A. (2022). Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend. International Polymer Processing, 37(1), 1-14. http://dx.doi.org/10.1515/ipp-2021-4115

Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006

Ahmed, M., Islam, M. R., Vanhoose, J., Hewavitharana, L., Stanich, A., & Hossain, M. (2016, November). Comparisons of Bending Stiffness of 3D Printed Samples of Different Materials. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50633, p. V009T12A023). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/IMECE2016-65119

Messimer, S. L., Rocha Pereira, T., Patterson, A. E., Lubna, M., & Drozda, F. O. (2019). Full-density fused deposition modeling dimensional error as a function of raster angle and build orientation: Large dataset for eleven materials. Journal of Manufacturing and Materials Processing, 3(1), 6. https://doi.org/10.3390/jmmp3010006

Baptista, R., Guedes, M., Pereira, M. F. C., Maurício, A., Carrelo, H., & Cidade, T. (2020). On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds. Bioprinting, 20, e00096. https://doi.org/10.3390/jmmp3010006

Şahin, İ., Top, N., & Bülbül, R. (2021). Effect of Infill Density and Infill Pattern on Mechanical Properties in Fused Deposition Modeling (FDM). Innovative Approaches in Additive Manufacturing Congress (IA4AM), Ankara, Türkiye, ss.65-74.

Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119-2127.

https://doi.org/10.1016/j.matpr.2021.09.433

Zisopol, D. G., Ion, N., & Portoaca, A. I. (2023). Comparison of the Charpy Resilience of Two 3D Printed Materials: A Study on the Impact Resistance of Plastic Parts. Engineering, Technology & Applied Science Research, 13(3), 10781-10784. https://doi.org/10.48084/etasr.5876

Tanveer, M. Q., Haleem, A., & Suhaib, M. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Applied Sciences, 1, 1-12. https://doi.org/10.1007/s42452-019-1744-1

Giri, J., Chiwande, A., Gupta, Y., Mahatme, C., & Giri, P. (2021). Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Materials Today: Proceedings, 47, 5856-5861. https://doi.org/10.1016/j.matpr.2021.04.283

Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006

Marques, J. M. & Marques, M. A. M. (2005). Estatística básica para os cursos de engenharia. Curitiba: Domínio do Saber.

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012

Publicado

12.08.2024

Como Citar

Drozda, F. O., Silva, R. J. de O., Chixaro, D. S., & Bravo, D. P. (2024). Estudo do efeito da combinação de preenchimento na absorção de energia de impacto de peças fabricadas em pla utilizando fabricação por filamentos fundidos. Brazilian Journal of Production Engineering, 10(3), 285–295. https://doi.org/10.47456/bjpe.v10i3.44945