Estudio del efecto de la combinación de llenado sobre la absorción de energía de impacto de piezas fabricadas en pla mediante fabricación de filamentos fundidos
DOI:
https://doi.org/10.47456/bjpe.v10i3.44945Palabras clave:
Fabricación de filamentos fundidos, mesoestructura, relleno híbrido, Prueba de CharpyResumen
Filament Fusion Manufacturing (FFF) es una de las tecnologías de fabricación aditiva más extendidas. Sin embargo, las piezas impresas suelen tener una fiabilidad menor en comparación con las producidas mediante procesos de fabricación tradicionales. Por tanto, investigar el comportamiento mecánico de estas piezas es un tema de investigación importante y de interés común entre académicos y fabricantes. Este estudio propone un nuevo enfoque para diseñar la estructura interna de piezas, combinando dos regiones distintas con diferentes rellenos. El objetivo era investigar el comportamiento de esta nueva mesoestructura sobre la tenacidad de las piezas. Para ello se fabricaron dos juegos de probetas de PLA. El primero construido con relleno simple y el segundo con relleno híbrido. Las muestras fueron ensayadas mediante Charpy Impact según ASTM D6110-10. Los resultados analizados por ANOVA y la microestructura por micrografías ópticas. El uso del recurso híbrido demostró ser eficiente para aumentar la tenacidad para densidades de relleno del 20%. Para muestras con una densidad de relleno superior al 50 %, el aumento de la tenacidad no fue significativo, ya que aumentaron el tiempo de impresión y el consumo de material para la fabricación. En situaciones donde se desean estructuras más ligeras y con mayor resistencia al impacto, el uso de relleno híbrido tiene gran relevancia.
Descargas
Citas
Chyr, G. & DeSimone, J. M. (2023). Review of high-performance sustainable polymers in additive manufacturing. Green Chemistry, 25(2), 453-466. https://doi.org/10.1039/D2GC03474C DOI: https://doi.org/10.1039/D2GC03474C
Reverte, J. M., Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., & Becar, J. P. (2020). Mechanical and geometric performance of PLA-based polymer composites processed by the fused filament fabrication additive manufacturing technique. Materials, 13(8), 1924. https://doi.org/10.3390/ma13081924 DOI: https://doi.org/10.3390/ma13081924
Fico, D., Rizzo, D., Casciaro, R., & Esposito Corcione, C. (2022). A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers, 14(3), 465. https://doi.org/10.3390/polym14030465 DOI: https://doi.org/10.3390/polym14030465
Bhatia, A. & Sehgal, A. K. (2023). Additive manufacturing materials, methods and applications: A review. Materials Today: Proceedings, 81, 1060-1067. https://doi.org/10.1016/j.matpr.2021.04.379 DOI: https://doi.org/10.1016/j.matpr.2021.04.379
Zanjanijam, A. R., Major, I., Lyons, J. G., Lafont, U., & Devine, D. M. (2020). Fused filament fabrication of peek: A review of process-structure-property relationships. Polymers, 12(8), 1665. doi: 10.3390/polym12081665 DOI: https://doi.org/10.3390/polym12081665
Jatti, V. S., Sapre, M. S., Jatti, A. V., Khedkar, N. K., & Jatti, V. S. (2022). Mechanical properties of 3D-printed components using fused deposition modeling: optimization using the desirability approach and machine learning regressor. Applied System Innovation, 5(6), 112. https://doi.org/10.3390/asi5060112 DOI: https://doi.org/10.3390/asi5060112
Hozdić, E. (2024). Characterization and Comparative Analysis of Mechanical Parameters of FDM-and SLA-Printed ABS Materials. Applied Sciences, 14(2), 649. https://doi.org/10.3390/app14020649 DOI: https://doi.org/10.3390/app14020649
Gao, X., Qi, S., Kuang, X., Su, Y., Li, J., & Wang, D. (2021). Fused filament fabrication of polymer materials: A review of interlayer bond. Additive Manufacturing, 37, 101658. https://doi.org/10.1016/j.addma.2020.101658 DOI: https://doi.org/10.1016/j.addma.2020.101658
Tanveer, M. Q., Suhaib, M., & Haleem, A. (2020). A New 3D Benchmarking Artifact to Evaluate Dimensional Accuracy and Geometric Tolerancing of Additive Manufacturing Technique. In Recent Advances in Mechanical Engineering: Select Proceedings of NCAME 2019 (pp. 261-273). Springer Singapore. https://doi.org/10.1007/978-981-15-1071-7_22 DOI: https://doi.org/10.1007/978-981-15-1071-7_22
Mishra, P. K., Senthil, P., Adarsh, S., & Anoop, M. S. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications, 24, 100605. https://doi.org/10.1016/j.coco.2020.100605 DOI: https://doi.org/10.1016/j.coco.2020.100605
Patterson, A. E., Pereira, T. R., Allison, J. T., & Messimer, S. L. (2019). IZOD impact properties of full-density FDM polymer materials with respect to raster angle and print orientation. Proceedings of IMECHE Part C. J. Mech. Eng. Sci, 1-13. http://dx.doi.org/10.1177/0954406219840385 DOI: https://doi.org/10.1177/0954406219840385
Mustafa, M. S., Muneer, M. A., Zafar, M. Q., Arif, M., Hussain, G., & Siddiqui, F. A. (2022). Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend. International Polymer Processing, 37(1), 1-14. http://dx.doi.org/10.1515/ipp-2021-4115 DOI: https://doi.org/10.1515/ipp-2021-4115
Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006
Ahmed, M., Islam, M. R., Vanhoose, J., Hewavitharana, L., Stanich, A., & Hossain, M. (2016, November). Comparisons of Bending Stiffness of 3D Printed Samples of Different Materials. In ASME International Mechanical Engineering Congress and Exposition (Vol. 50633, p. V009T12A023). American Society of Mechanical Engineers. http://dx.doi.org/10.1115/IMECE2016-65119 DOI: https://doi.org/10.1115/IMECE2016-65119
Messimer, S. L., Rocha Pereira, T., Patterson, A. E., Lubna, M., & Drozda, F. O. (2019). Full-density fused deposition modeling dimensional error as a function of raster angle and build orientation: Large dataset for eleven materials. Journal of Manufacturing and Materials Processing, 3(1), 6. https://doi.org/10.3390/jmmp3010006 DOI: https://doi.org/10.3390/jmmp3010006
Baptista, R., Guedes, M., Pereira, M. F. C., Maurício, A., Carrelo, H., & Cidade, T. (2020). On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds. Bioprinting, 20, e00096. https://doi.org/10.3390/jmmp3010006 DOI: https://doi.org/10.1016/j.bprint.2020.e00096
Şahin, İ., Top, N., & Bülbül, R. (2021). Effect of Infill Density and Infill Pattern on Mechanical Properties in Fused Deposition Modeling (FDM). Innovative Approaches in Additive Manufacturing Congress (IA4AM), Ankara, Türkiye, ss.65-74.
Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119-2127.
https://doi.org/10.1016/j.matpr.2021.09.433 DOI: https://doi.org/10.1016/j.matpr.2021.09.433
Zisopol, D. G., Ion, N., & Portoaca, A. I. (2023). Comparison of the Charpy Resilience of Two 3D Printed Materials: A Study on the Impact Resistance of Plastic Parts. Engineering, Technology & Applied Science Research, 13(3), 10781-10784. https://doi.org/10.48084/etasr.5876 DOI: https://doi.org/10.48084/etasr.5876
Tanveer, M. Q., Haleem, A., & Suhaib, M. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Applied Sciences, 1, 1-12. https://doi.org/10.1007/s42452-019-1744-1 DOI: https://doi.org/10.1007/s42452-019-1744-1
Giri, J., Chiwande, A., Gupta, Y., Mahatme, C., & Giri, P. (2021). Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Materials Today: Proceedings, 47, 5856-5861. https://doi.org/10.1016/j.matpr.2021.04.283 DOI: https://doi.org/10.1016/j.matpr.2021.04.283
Ansari, A. A. & Kamil, M. (2022). Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment. International Journal of Lightweight Materials and Manufacture, 5(3), 369-383. https://doi.org/10.1016/j.ijlmm.2022.04.006 DOI: https://doi.org/10.1016/j.ijlmm.2022.04.006
Marques, J. M. & Marques, M. A. M. (2005). Estatística básica para os cursos de engenharia. Curitiba: Domínio do Saber.
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012 DOI: https://doi.org/10.1016/j.addr.2016.06.012

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Brazilian Journal of Production Engineering

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
