Ruta de producción de biocombustibles a partir de corteza de macadamia: efecto de los parámetros en el índice de mezcla del lechos fluidizados
DOI:
https://doi.org/10.47456/bjpe.v9i1.40123Palabras clave:
Biomasa, Dinámica de fluidos, Energía, Segregación, SostenibilidadResumen
La pirólisis de corteza de macadamia (MNS) en un lecho fluidizado es un potencial para producir bio-aceite. El contacto efectivo gas-solido alcanza altas tasas de transferencia de calor y temperatura uniforme en el lecho. Aunque, las mezclas binarias pueden segregar partículas, eso reduce las tasas de transferencia de calor y masa. Por eso, se aplicó el diseño experimental para evaluar el efecto de los parámetros (velocidad de inyección del aire, V/VMF; relación del diámetro de partículas, DMNS/DS y fracción de masa, XMNS) en el índice de mezcla (Im) del lecho fluidizado compuesto por MNS y arena. El análisis de los datos reveló que solo DMNS/DS y V/VMF influenciaron en el índice de mezcla (Im), considerando un intervalo de confianza del 95%. Así, para velocidades de aire 20% arriba de la fluidización mínima y mezclas con DMNS/DS < 3, los lechos fluidizados mostraron concentraciones de partículas uniformes en toda la columna. Los resultados indican que el lecho fluidizado puede utilizarse en la producción de biocombustible a partir de la corteza de macadamia.
Descargas
Citas
Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Olazar, M., & Bilbao, J. (2010). Operating Conditions for the Pyrolysis of Poly-(ethylene terephthalate) in a Conical Spouted-Bed Reactor. Industrial & Engineering Chemistry Research, 49(5), 2064–2069. https://doi.org/10.1021/ie900557c DOI: https://doi.org/10.1021/ie900557c
Bacelos, M. S., & Freire, J. T. (2006). Stability of spouting regimes in conical spouted beds with inert particle mixtures. Industrial and Engineering Chemistry Research, 45(2). https://doi.org/10.1021/ie050633s DOI: https://doi.org/10.1021/ie050633s
Barcelos, K. M., Almeida, P. S., Araujo, M. S., Xavier, T. P., Santos, K. G., Bacelos, M. S., & Lira, T. S. (2020). Particle segregation in spouted bed pyrolysis reactor: Sand-coconut shell and sand-cocoa shell mixtures. Biomass and Bioenergy, 138, 105592. https://doi.org/10.1016/j.biombioe.2020.105592 DOI: https://doi.org/10.1016/j.biombioe.2020.105592
Daleffe, R. V., & Freire, J. T. (2004). Analysis of the fluid-dynamic behavior of fluidized and vibrofluidized bed containing glycerol. Brazilian Journal of Chemical Engineering, 21(1), 35–46. https://doi.org/10.1590/S0104-66322004000100005 DOI: https://doi.org/10.1590/S0104-66322004000100005
Freitas, T. M., Arrieche, L. S., Ribeiro, D. C., Gidaspow, D., & Bacelos, M. S. (2017). CFD analysis of fluidized beds using wastes from post-consumer carton packaging. Chemical Engineering and Processing: Process Intensification, 111, 89–100. https://doi.org/10.1016/j.cep.2016.12.002 DOI: https://doi.org/10.1016/j.cep.2016.12.002
Gong, Y., & Pegg, R. B. (2015). Tree nut oils: Properties and processing for use in food. Specialty Oils and Fats in Food and Nutrition: Properties, Processing and Applications, 65–86. https://doi.org/10.1016/B978-1-78242-376-8.00003-X DOI: https://doi.org/10.1016/B978-1-78242-376-8.00003-X
Hasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2022). Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Reports, 8, 429–437. https://doi.org/10.1016/J.EGYR.2022.10.323 DOI: https://doi.org/10.1016/j.egyr.2022.10.323
Hidaka, N., Onitani, M., Matsumoto, T., & Shigeharu, M. (1995). Inverted segregation of binary particles in gas-liquid-solid fluidized bed. Powder Technology, 84, 157–163. DOI: https://doi.org/10.1016/0032-5910(95)02988-E
Iannello, S., Bond, Z., Sebastiani, A., Errigo, M., & Materazzi, M. (2023). Axial segregation behaviour of a reacting biomass particle in fluidized bed reactors: experimental results and model validation. Fuel, 338, 127234. https://doi.org/10.1016/J.FUEL.2022.127234 DOI: https://doi.org/10.1016/j.fuel.2022.127234
Ji, X., Bie, R., Chen, P., & Gu, W. (2016). Reed Black Liquor Combustion in Fluidized Bed for Direct Causticization with Limestone as Bed Material. Energy and Fuels, 30(7), 5791–5798. https://doi.org/10.1021/ACS.ENERGYFUELS.6B00847 DOI: https://doi.org/10.1021/acs.energyfuels.6b00847
José, M. J. S., Olazar, M., Peñas, F. J., & Bilbao, J. (1994a). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. 1838–1844. https://doi.org/10.1021/ie00031a025
José, M. J. S., Olazar, M., Peñas, F. J., & Bilbao, J. (1994b). Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. 1838–1844. https://doi.org/10.1021/ie00031a025 DOI: https://doi.org/10.1021/ie00031a025
Lee, J., Kim, S., You, S., & Park, Y. K. (2023). Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renewable and Sustainable Energy Reviews, 178, 113240. https://doi.org/10.1016/J.RSER.2023.113240 DOI: https://doi.org/10.1016/j.rser.2023.113240
Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. In Renewable and Sustainable Energy Reviews, 73, 346–368. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.01.142 DOI: https://doi.org/10.1016/j.rser.2017.01.142
López, G., Olazar, M., Aguado, R., & Bilbao, J. (2010). Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 89(8), 1946-1952. https://doi.org/10.1016/J.FUEL.2010.03.029 DOI: https://doi.org/10.1016/j.fuel.2010.03.029
Mantegazini, D. Z., Neves, F. L., Xavier, T. P., & Bacelos, M. S. (2021). Review on advanced technologies for aluminum recovery from carton packages waste using pyrolysis. Brazilian Journal of Production Engineering-BJPE, 7(1), 117–129. https://doi.org/10.47456/bjpe.v7i1.34583 DOI: https://doi.org/10.47456/bjpe.v7i1.34583
Marques, I. I. D. R., & Bacelos, M. S. (2013). Analysis of conical spouted bed fluid dynamics using carton mixtures. Chemical Engineering and Processing: Process Intensification, 70, 37–47. https://doi.org/10.1016/j.cep.2013.05.009 DOI: https://doi.org/10.1016/j.cep.2013.05.009
Martinez Castilla, G., Larsson, A., Lundberg, L., Johnsson, F., & Pallarès, D. (2020). A novel experimental method for determining lateral mixing of solids in fluidized beds – Quantification of the splash-zone contribution. Powder Technology, 370, 96–103. https://doi.org/10.1016/J.POWTEC.2020.05.036 DOI: https://doi.org/10.1016/j.powtec.2020.05.036
Massaro Sousa, L., & Ferreira, M. C. (2020). On the performance of a spouted bed type device for feeding spent coffee grounds to a circulating fluidized bed reactor. Chemical Engineering Research and Design, 160, 31–38. https://doi.org/10.1016/J.CHERD.2020.05.002 DOI: https://doi.org/10.1016/j.cherd.2020.05.002
Melo, J. L. Z., Bacelos, M. S., Pereira, F. A. R., Lira, T. S., & Gidaspow, D. (2016). CFD modeling of conical spouted beds for processing LDPE/Al composite. Chemical Engineering and Processing: Process Intensification, 108, 93–108. https://doi.org/10.1016/j.cep.2016.07.011 DOI: https://doi.org/10.1016/j.cep.2016.07.011
Norouzi, H. R., Mostoufi, N., & Sotudeh-Gharebagh, R. (2012). Effect of fines on segregation of binary mixtures in gas-solid fluidized beds. Powder Technology, 225, 7–20. https://doi.org/10.1016/j.powtec.2012.03.025 DOI: https://doi.org/10.1016/j.powtec.2012.03.025
Nunes, C. A., Freitas, M. P., Pinheiro, A. C. M., & Bastos, S. C. (2012). Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23(11), 2003–2010. https://doi.org/10.1590/S0103-50532012005000073 DOI: https://doi.org/10.1590/S0103-50532012005000073
Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487–494. https://doi.org/10.1016/J.FUEL.2004.10.010 DOI: https://doi.org/10.1016/j.fuel.2004.10.010
Saidi, M., Basirat Tabrizi, H., Chaichi, S., & Dehghani, M. (2014). Pulsating flow effect on the segregation of binary particles in a gas-solid fluidized bed. Powder Technology, 264, 570–576. https://doi.org/10.1016/j.powtec.2014.06.003 DOI: https://doi.org/10.1016/j.powtec.2014.06.003
Samoraj, M., Izydorczyk, G., Krawiec, P., Moustakas, K., & Chojnacka, K. (2022). Biomass-based micronutrient fertilizers and biofortification of raspberries fruits. Environmental Research, 215, 114304. https://doi.org/10.1016/J.ENVRES.2022.114304 DOI: https://doi.org/10.1016/j.envres.2022.114304
Selvatici, A. C., Mantegazini, D. Z., & Bacelos, M. S. (2021). Produção de combustível a partir de resíduos de embalagens tetra pak em leito fluidizado: identificação de fatores que afetam a mistura de partículas de areia e compósito PEBD/AL. Brazilian Journal of Production Engineering, 7(5), 133–144. https://doi.org/10.47456/BJPE.V7I5.36926 DOI: https://doi.org/10.47456/bjpe.v7i5.36926
Soria-Verdugo, A., Cano-Pleite, E., Passalacqua, A., & Fox, R. O. (2023a). Effect of particle shape on biomass pyrolysis in a bubbling fluidized bed. Fuel, 339, 127365. https://doi.org/10.1016/J.FUEL.2022.127365
Soria-Verdugo, A., Cano-Pleite, E., Passalacqua, A., & Fox, R. O. (2023b). Effect of particle shape on biomass pyrolysis in a bubbling fluidized bed. Fuel, 339. https://doi.org/10.1016/j.fuel.2022.127365 DOI: https://doi.org/10.1016/j.fuel.2022.127365
Soria-Verdugo, A., Rubio-Rubio, M., Goos, E., & Riedel, U. (2020). On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor. Renewable Energy, 160, 312–322. https://doi.org/10.1016/j.renene.2020.07.008 DOI: https://doi.org/10.1016/j.renene.2020.07.008
Strezov, V., Patterson, M., Zymla, V., Fisher, K., Evans, T. J., & Nelson, P. F. (2007). Fundamental aspects of biomass carbonisation. Journal of Analytical and Applied Pyrolysis, 79(1–2), 91–100. https://doi.org/10.1016/J.JAAP.2006.10.014 DOI: https://doi.org/10.1016/j.jaap.2006.10.014
Tchoffor, P. A., Davidsson, K. O., & Thunman, H. (2015). Production of Activated Carbon within the Dual Fluidized Bed Gasification Process. Industrial and Engineering Chemistry Research, 54(15), 3761–3766. https://doi.org/10.1021/IE504291C DOI: https://doi.org/10.1021/ie504291c
Tran, Q. K., Han, S., Ly, H. V., Kim, S. S., & Kim, J. (2020). Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spray-pyrolysis-derived spherical γ-Al2O3-SiO2 catalysts. Journal of Industrial and Engineering Chemistry, 92, 243–251. https://doi.org/10.1016/J.JIEC.2020.09.012 DOI: https://doi.org/10.1016/j.jiec.2020.09.012
Wang, S., Hu, C., Luo, K., Yu, J., & Fan, J. (2022). Multi-scale numerical simulation of fluidized beds: Model applicability assessment. Particuology. https://doi.org/10.1016/J.PARTIC.2022.11.011 DOI: https://doi.org/10.1016/j.partic.2022.11.011
Wang, S., & Shen, Y. (2021). Particle-scale study of heat and mass transfer in a bubbling fluidised bed. Chemical Engineering Science, 240, 116655. https://doi.org/10.1016/J.CES.2021.116655 DOI: https://doi.org/10.1016/j.ces.2021.116655
Xavier, T. P., Libardi, B. P., Lira, T. S., & Barrozo, M. A. S. (2016). Fluid dynamic analysis for pyrolysis of macadamia shell in a conical spouted bed. Powder Technology, 299, 210–216. https://doi.org/10.1016/J.POWTEC.2016.05.034 DOI: https://doi.org/10.1016/j.powtec.2016.05.034
Yang, C., Kwon, H., Bang, B., Jeong, S., & Lee, U. (2022). Role of biomass as low-carbon energy source in the era of net zero emissions. Fuel, 328, 125206. https://doi.org/10.1016/J.FUEL.2022.125206 DOI: https://doi.org/10.1016/j.fuel.2022.125206
Zhou, M., Wang, S., Luo, K., & Fan, J. (2022). Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed. Energy, 247, 123496. https://doi.org/10.1016/J.ENERGY.2022.123496 DOI: https://doi.org/10.1016/j.energy.2022.123496
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Brazilian Journal of Production Engineering
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.