Evaluación del ciclo de vida de áridos reciclados aplicados a materiales de construcción a base de cemento
DOI:
https://doi.org/10.47456/bjpe.v10i2.44389Palabras clave:
ACV, sostenibilidad, RCDResumen
Los Áridos Reciclados (AR) surgen como una solución para reducir los impactos ambientales al convertir los Residuos de Construcción y Demolición (RCD) en material de construcción. El objetivo general de la investigación es realizar un Análisis del Ciclo de Vida (ACV) del uso de AR para la producción de materiales de construcción a base de cemento, con el objetivo de evaluar la influencia de la AR en los indicadores de impacto ambiental. En total, se utilizaron 24 rasgos para el uso de AR; en morteros, bloques prefabricados, hormigones no estructurales, estructurales y autocompactantes. Se utilizó el programa OpenLCA para calcular los impactos ambientales utilizando 5 métodos de impacto diferentes. Al analizar el Inventario del Ciclo de Vida e interpretar los resultados del ACV, se observa que la producción de AR se presenta como una solución ambientalmente viable en relación al material de referencia, siempre que se tengan en cuenta los impactos evitados por el reciclaje. El transporte RCD es el principal responsable de los impactos generados. El material reciclado demostró ser ambientalmente viable en varios niveles de reposición, logrando reducciones de hasta un 43,6% en los indicadores. La RA tiene el potencial de sustituir a los Agregados Naturales (AN) en casi todos los escenarios analizados.
Descargas
Citas
Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. (2022). Panorama dos resíduos sólidos no brasil. Recuperado de https://abrelpe.org.br/panorama/
Agrela, F., Díaz-López, J. L., Rosales, J., Cuenca-Moyano, G. M., Cano, H., & Cabrera, M. (2021). Environmental assessment, mechanical behavior and new leaching impact proposal of mixed recycled aggregates to be used in road construction. Journal of Cleaner Production, 280, 124362. https://doi.org/10.1016/j.jclepro.2020.124362 DOI: https://doi.org/10.1016/j.jclepro.2020.124362
Alzard, M. H., El-Hassan, H., & El-Maaddawy, T. (2021). Environmental and Economic Life Cycle Assessment of Recycled Aggregates Concrete in the United Arab Emirates. Sustainability, 13(18), 10348. https://doi.org/10.3390/su131810348 DOI: https://doi.org/10.3390/su131810348
Angulo, S. C., Oliveira, L. S., & Machado, L. (2022). Pesquisa setorial ABRECON 2020: a reciclagem de resíduos de construção e demolição no Brasil. In S. C. Angulo, L. S. Oliveira, & L. C. Machado (Eds.), Pesquisa setorial ABRECON 2020: a reciclagem de resíduos de construção e demolição no Brasil. Universidade de São Paulo. Escola Politécnica. https://doi.org/10.11606/9786589190103 DOI: https://doi.org/10.11606/9786589190103
Associação Brasileira de Normas Técnicas. (2014a). NBR ISO 14040: Gestão ambiental - Avaliação do ciclo de vida – Princípios e estrutura. ABNT.
Associação Brasileira de Normas Técnicas. (2014b). NBR ISO 14044: Gestão ambiental - Avaliação do ciclo de vida - Requisitos e orientações. ABNT.
Associação Brasileira de Normas Técnicas. (2021). NBR 15116: Agregados reciclados para uso em argamassas e concretos de cimento Portland - Requisitos e métodos de ensaios. ABNT.
Attri, G. K., Gupta, R. C., & Shrivastava, S. (2022). Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust. Journal of Cleaner Production, 362, 132354. https://doi.org/10.1016/j.jclepro.2022.132354 DOI: https://doi.org/10.1016/j.jclepro.2022.132354
Bello, L. B. D., & Calmon, J. L. (2023). Avaliação do Ciclo de Vida de agregados reciclados : Uma revisão crítica e proposta de diretrizes. IBRACON, 64(1), 1–16.
Braga, A. M., Silvestre, J. D., & de Brito, J. (2017). Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 162, 529–543. https://doi.org/10.1016/J.JCLEPRO.2017.06.057 DOI: https://doi.org/10.1016/j.jclepro.2017.06.057
Brasil. (2022). Estimativas anuais de emissões de gases estufa no Brasil: Vol. 6 Edição (6a Edição). Recuperado de https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/estimativas-anuais-de-emissoes-gee
Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003 DOI: https://doi.org/10.1016/j.cemconcomp.2014.11.003
Colangelo, F., Petrillo, A., & Farina, I. (2021). Comparative environmental evaluation of recycled aggregates from construction and demolition wastes in Italy. Science of The Total Environment, 798, 149250. https://doi.org/10.1016/j.scitotenv.2021.149250 DOI: https://doi.org/10.1016/j.scitotenv.2021.149250
Di Maria, A., Eyckmans, J., & Van Acker, K. (2018). Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Management, 75, 3–21. https://doi.org/10.1016/j.wasman.2018.01.028 DOI: https://doi.org/10.1016/j.wasman.2018.01.028
Ding, T., Xiao, J., & Tam, V. W. Y. (2016). A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Management, 56, 367–375. https://doi.org/10.1016/j.wasman.2016.05.031 DOI: https://doi.org/10.1016/j.wasman.2016.05.031
Fang, C., Feng, J., Huang, S., Hu, J., Wang, W., & Li, N. (2022). Mechanical properties and microscopic characterization of mortar with recycled aggregate from waste road. Case Studies in Construction Materials, 17, e01441. https://doi.org/10.1016/J.CSCM.2022.E01441 DOI: https://doi.org/10.1016/j.cscm.2022.e01441
Fiol, F., Thomas, C., Muñoz, C., Ortega-López, V., & Manso, J. M. (2018). The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete. Construction and Building Materials, 182, 309–323. https://doi.org/10.1016/j.conbuildmat.2018.06.132 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.132
Grabois, T. M., Caldas, L. R., Julião, N. R., & Toledo Filho, R. D. (2020). An Experimental and Environmental Evaluation of Mortars with Recycled Demolition Waste from a Hospital Implosion in Rio de Janeiro. Sustainability, 12(21), 8945. https://doi.org/10.3390/su12218945 DOI: https://doi.org/10.3390/su12218945
Mariaková, D., Mocová, K. A., Pešta, J., Fořtová, K., Tripathi, B., Pavlů, T., & Hájek, P. (2022). Ecotoxicity of Concrete Containing Fine-Recycled Aggregate: Effect on Photosynthetic Pigments, Soil Enzymatic Activity and Carbonation Process. Sustainability (Switzerland), 14(3). https://doi.org/10.3390/su14031732 DOI: https://doi.org/10.3390/su14031732
Marinković, S., Josa, I., Braymand, S., & Tošić, N. (2023). Sustainability assessment of recycled aggregate concrete structures: A critical view on the current state‐of‐knowledge and practice. Structural Concrete, March. https://doi.org/10.1002/suco.202201245 DOI: https://doi.org/10.1002/suco.202201245
Mello, R. Z. (2018). AVALIAÇÃO DO CICLO DE VIDA DA UTILIZAÇÃO DO RESÍDUO DO BENEFICIAMENTO DE ROCHAS ORNAMENTAIS EM MATERIAIS DE CONSTRUÇÃO CIVIL À BASE DE CIMENTO [Dissertação (Mestrado), Universidade Federal do Espírito Santo]. Recuperado de http://repositorio.ufes.br/handle/10/10699
Menegatti, L. C., Castrillon Fernandez, L. I., Caldas, L. R., Pepe, M., Pittau, F., Zani, G., Rampini, M. C., Michels, J., Toledo Filho, R. D., & Martinelli, E. (2022). Environmental Performance of Deconstructable Concrete Beams Made with Recycled Aggregates. Sustainability, 14(18), 11457. https://doi.org/10.3390/su141811457 DOI: https://doi.org/10.3390/su141811457
Rosado, L. P., Vitale, P., Penteado, C. S. G., & Arena, U. (2019). Life cycle assessment of construction and demolition waste management in a large area of São Paulo State, Brazil. Waste Management, 85, 477–489. https://doi.org/10.1016/j.wasman.2019.01.011 DOI: https://doi.org/10.1016/j.wasman.2019.01.011
Rosado, L. Peixoto., Vitale, Pierluca., Penteado, C. S. G. ., & Arena, Umberto. (2017). Life cycle assessment of natural and mixed recycled aggregate production in Brazil. Journal of Cleaner Production, 151, 634–642. https://doi.org/10.1016/j.jclepro.2017.03.068 DOI: https://doi.org/10.1016/j.jclepro.2017.03.068
Steinmann, Z. J. N., Schipper, A. M., Hauck, M., & Huijbregts, M. A. J. (2007). How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Journal of Statistical Software, 18(2), 3–6. https://doi.org/10.1021/acs.est.5b05179 DOI: https://doi.org/10.1021/acs.est.5b05179
Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546. https://doi.org/10.1016/J.CONBUILDMAT.2016.03.203 DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.203
Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656–666. https://doi.org/10.1016/j.conbuildmat.2016.07.125 DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.125
Vieira, D. R., Calmon, J. L., Zulcão, R., & Coelho, F. Z. (2018). Consideration of strength and service life in cradle-to-gate life cycle assessment of self-compacting concrete in a maritime area: a study in the Brazilian context. Environment, Development and Sustainability, 20(4), 1849–1871. https://doi.org/10.1007/s10668-017-9970-4 DOI: https://doi.org/10.1007/s10668-017-9970-4
Waskow, R., Gonçalves Maciel, V., Tubino, R., & Passuello, A. (2021). Environmental performance of construction and demolition waste management strategies for valorization of recycled coarse aggregate. Journal of Environmental Management, 295, 113094. https://doi.org/10.1016/j.jenvman.2021.113094 DOI: https://doi.org/10.1016/j.jenvman.2021.113094
Weidema, B. P., & Wesnaes, M. S. (1996). Data quality management for life cycle inventories-an example of using data quality indicators. Journal of Cleaner Production, 4(3–4), 167–174. https://doi.org/10.1016/S0959-6526(96)00043-1 DOI: https://doi.org/10.1016/S0959-6526(96)00043-1
Weidema, B. Pedersen., Bauer, C. ., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology Data quality guideline for the ecoinvent database version 3 Weidema,. Paper Knowledge . Toward a Media History of Documents, 12-. Recuperado de https://lca-net.com/publications/show/overview-methodology-data-quality-guideline-ecoinvent-database-version-3/
Descargas
- #BJPE44389Press_Pt.pdf (Português (Brasil))
- Audio44389_Pt.mp3 (Português (Brasil))
- Audio44389_En.mp3 (English)
- GraphicalAbstract44389_Pt.png (Português (Brasil))
- GraphicalAbstract44389_En.png (English)
- GraphicalAbstract44389_Es.png
- Linkedin44389 (Português (Brasil))
- InstaGram44389 (Português (Brasil))
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Brazilian Journal of Production Engineering
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.