Application of the DPSIR (Drivers – Pressures – State – Impact – Response) model with a focus on technological responses to reduce greenhouse gases
DOI:
https://doi.org/10.21712/lajer.2022.v9.n1.p49-68Keywords:
DPSIR, CO2 reduction, Climate technologiesAbstract
Climate change is a major challenge today. It is known that the increase in the concentration of greenhouse gases, especially CO2, intensifies this problem. This increase is due to some human activities, for example, energy consumption. To understand this causal relationship, the present study aimed to apply the DPSIR (Drivers – Pressures – State – Impact – Response) cause and effect model focusing on technological responses that favor the reduction of CO2 emission and its transformation into value-added products. In this case, a systemic bibliographic search was used in the databases of scientific articles. With the application of the DPSIR, it was possible to visualize in a clearer way the driving forces that lead to the emission of CO2, pressures on the environment, change of states, impacts and, finally, the technological responses. The main technological approaches identified were carbon capture and storage (CCS) as well as its use (CCUS), the latter being related to CO2 recycling. This recycling can occur through several chemical routes, such as CO2 photocatalysis, which has a great advantage because it does not require energy addition in its process and the other route is CO2 hydrogenation, which allows obtaining a variety of products with different energy purposes. Finally, climate change is a systemic challenge that needs solutions whether public, private or technological that combine and cooperate with each other, in this sense the application of the DPSIR model can be a strategy for decision makers.
Downloads
References
ANDREW, R. et al. 2021. The Global Carbon Project’s fossil CO2 emissions dataset.
Aresta M., Dibenedetto A. 2010. Industrial utilization of carbon dioxide (CO2) Maroto-Valer M.M. (Ed.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Volume 2: Carbon Dioxide (CO2) Storage and Utilisation, v. 2, Woodhead Publishing Limited, Great Abington.
BALLANTYNE, G. et al. 2015. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proceedings of the royal society B. v. 282, https://doi.org/10.1098/rspb.2015.1130
BONFIM-ROCHA, Lucas et al. 2018. Multi-objective design of a new sustainable scenario for bio-methanol production in Brazil. Journal of Cleaner Production, v. 187 pp. 1043-1056.
CHANGE, N. G. C. Global Surface Temperature | NASA Global Climate Change. Disponível em: <https://climate.nasa.gov/vital-signs/global-temperature>. Acesso em: 11 dez de 2021.
CHANGE, N. G. C. Ocean Heat Content | NASA Global Climate Change. Disponível em: <https://climate.nasa.gov/vital-signs/ocean-heat>. Acesso em: 12 dez de 2021.
DOWELL, Niall M. et al., 2017. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, v. 7, p. 243-249. Disponível em: https://www.nature.com/articles/nclimate3231
DU, C. et al., 2020. CO2 transformation to multicarbon products by photocatalysis and electrocatalysis. Materialstoday Advances, v. 6. https://doi.org/10.1016/j.mtadv.2020.100071
FARIAS, L. e FÁVARO, D 2011. Vinte anos de Química verde: conquistas e desafios. Química Nova. v. 34, n. 6, p. 1089-1093.
FRANCA, C. M. R. AZAPAGIC, Adisa 2015. Carbon capture, storage and utilisaton Technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, v.9, p. 82-102. https://doi.org/10.1016/j.jcou.2014.12.001
GAMBHIR, Ajay. TAVONI, Massimo 2019. Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation. One Earth, v.1, p. 405-409. https://doi.org/10.1016/j.oneear.2019.11.006
GARI, R. S. et al., 2015. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean & Coastal Management, v. 103, p. 63-77.
GIDDENS, Anthony 2009. The Politics of Climate Change. Cambridge: Polity Press, p. 256.
Global Carbon Atlas. Welcome to Carbon Atlas. Disponível em: <http://www.globalcarbonatlas.org/es/content/welcome-carbon-atlas>. Acesso em: 25 nov. 2021.
GLOBAL CARBON BUDGET. Carbon budget 2021. Disponível em: < https://www.globalcarbonproject.org/carbonbudget/21/files/GCP_CarbonBudget_2021.pdf >. Acesso em: 18 de novembro de 2021.
GLOBAL CCS INSTITUTE. Carbon removal with CCS Technologies. Disponível em: < https://www.globalccsinstitute.com/resources/publications-reports-research/carbon-removal-and-ccs/> Acesso em: 22/05/2021
GLOBAL CCS INSTITUTE. Facility Date. Disponível em: < https://co2re.co/FacilityData> Acesso em: 22/01/2022.
GOEPPERT, A. et al. 2018. Toward a Sustainable Carbon Cycle: The Methanol Economy. Green Chemistry. University of Southern California, Los Angeles, CA, Estados Unidos.
GOEPPERT, Alain et al. 2014. Recycling of carbon dioxide to metanol and derived products–closing the loop. Chemical Society Reviews, v. 43, n. 23, p. 7995-8048.
GOTHE, Maitê L. et al. 2020. Selective CO2 hydrogenation into methanol in a supercritical flow process. Journal of CO2 Utilization, v. 40.
HEUBERGER, Clara F. et al. 2016. Quantifying the value of CCS for the future electricity system. Royal Society of Chemistry. 10.1039/C6EE01120A
HOLMAN. P. M D. A. et al. The concepts and development of a participatory regional integrated assessment tool Clim. Change. 2008. 10.1007/s10584-008-9453-6
INTERNATIONAL ENERGY AGENCY (IEA), 2013. Technology roadmap: Carbon capture and storage. Disponível em: < https://iea.blob.core.windows.net/assets/bca6758e-9a74-4d2a-9c35-b324d81fc714/TechnologyRoadmapCarbonCaptureandStorage.pdf>.
INTERNATIONAL ENERGY AGENCY (IEA), 2016. 20 Years of Carbon Capture and Storage IEA. Disponível em:< https://iea.blob.core.windows.net/assets/24c3d26b-aa44-4b54-b9c0-5201d4d86a04/20YearsofCarbonCaptureandStorage_WEB.pdf >
INTERNATIONAL ENERGY AGENCY (IEA). Transforming Industry through CCUS. Disponível em:https://www.iea.org/reports/transforming-industry-through-ccus Acesso em: 19/05/2021.
IPCC, 2005: Carbon Dioxide Capture and Storage. Disponível em: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/
IPCC, 2007: Climate Change: 2007 – Syntese Report. Disponível em: https://www.ipcc.ch/report/ar4/syr/
IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Reporto f the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC, 2018: Painel Intergovernamental sobre mudanças climáticas – Aquecimento global de 1,5°C. Disponível em: https://www.ipcc.ch/site/assets/uploads/2019/07/SPM-Portuguese-version.pdf Acesso em: 19/05/2021.
JARVIS, Sean M. SAMSATLI, Sheila 2018. Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews, v. 85, p. 46-68. https://doi.org/10.1016/j.rser.2018.01.007
KAMKENG, Ariane D. N. et al. 2020. Transformation Technologies for CO2 utilisation: Current status, challenges and future prospects. Chemical Engineering Journal, v. 409, p. 128138. https://doi.org/10.1016/j.cej.2020.128138
KEITH, David W. et al. 2018. A Process for Capturing CO2 from the Atmosphere. Joule, v. 2, p. 1573-1594. https://doi.org/10.1016/j.joule.2018.05.006
KETZER, João M. M. et al. 2016. Atlas brasileiro de captura e armazenamento geológico de CO2. Editora Universitária da PUCRS. Porto Alegre, RS.
KOHL, A.; NIELSEN, R. Gas Purification, 5th ed.; Gulf Publishing Co.: Houston, 1997. Global CCS Institute. Global Status of CCS 2021. Disponível em: < https://www.globalccsinstitute.com/resources/global-status-report/>. Acesso em 10 de janeiro de 2022.
KUMAR, A. et al. 2022. Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of The Total Environment, v. 806, p. 150349.
LEONARDÃO, E. J. et al. "Green chemistry": os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Química nova, v. 26, jan. 2003. https://doi.org/10.1590/S0100-40422003000100020
LEWISON, Rebeca L. et al. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environmental Science & Policy, v. 56, p. 110-119, Fev, 2016. https://doi.org/10.1016/j.envsci.2015.11.001
MACHADO, G. V. et al. Informe Técnico Competitividade do Gás Natural: Estudo de Caso na Indústria de Metanol. EPE – Empresa de Pesquisa Energética. 2019
METHANOL INSTITUTE. Renewable Methanol Report. 2018. Disponível em: < https://www.methanol.org/wp-content/uploads/2019/01/MethanolReport.pdf> Acesso em: 10/12/2021.
MILLER, Bruce G. 13 – Carbon Dioxide Emissions Reduction and Storage. Clean Coal Engineering Technology. Edição 2, p. 609-668, 2017. https://doi.org/10.1016/B978-0-12-811365-3.00013-2
MIRANDA, J. L. et al. 2018. O antropoceno e o CO2: Processos de captura e conversão. Revista Virtual de Química.
MIRANDA, Mariana N. et al. 2020. Microplastics in the environment: A DPSIR analysis with focus on the responses. Science of the Total Environment, v. 718. https://doi.org/10.1016/j.scitotenv.2019.134968
MOSS. E. D. et al. 2021. Investigating the impacts of climate change on ecosystem services in UK agro-ecosystems: An application of the DPSIR framework. Land Use Policy, v. 105. https://doi.org/10.1016/j.landusepol.2021.105394
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). The Causes of Climate Change. Disponível em: https://climate.nasa.gov/causes/ Acesso em: 30 de abril de 2021.
NETO, Roberto Liberato; MOREIRA, José Roberto Simões 2007. Geração e combustão do hidrogênio obtido através do processo de eletrólise da água. Portal de química. Leis da Eletrólise.
NEWTON, Aline. WEICHSELGARTNER, Juergen 2014. Hotspots of coastal vulnerability: A DPSIR analysis to find societal pathways and responses. Estuarine, Coastal and Shelf Science, v.140, p. 123-133. https://doi.org/10.1016/j.ecss.2013.10.010
NOAA. National Oceanic and Atmospheric Administration: Despite pandemic shutdowns, carbon dioxide and methane surged in 2020. Abr. 2021. Disponível em: < https://research.noaa.gov/article/ArtMID/587/ArticleID/2742/Despite-pandemic-shutdowns-carbon-dioxide-and-methane-surged-in-2020> Acesso em: 20 de novembro de 2021.
NOBRE, Carlos A. REID, Julia, VEIGA, A. P. S. 2012. Fundamentos científicos das mudanças climáticas. São José dos Campos, SP: Rede Clima/INPE, p. 44.
NOGUEIRA, R. F. P.; JARDIM, W. F. 1998. A fotocatálise heterogênea e sua aplicação ambiental. Química nova, v.21, p. 69-72.
OECD 1993. OECD Core Set of Indicators for Environmental Performance Reviews. Organization for Economic Cooperation and Development, Paris, France pp. 93.
OLAH, George A.; GOEPPERT, Alain; PRAKASH, GK Surya 2009. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbono neutral fuels and synthetic hydrocarbons. The Journal of organic chemistry, v. 74, n. 2, p. 487-498.
OMANN. I. A e STOCKER, J. J. 2009. Climate change as a threat to biodiversity: an application of the DPSIR approach. Ecologial Economic, v. 69, pp. 24-31. https://doi.org/10.1016/j.ecolecon.2009.01.003
PACHAURI, R. K.; MAYER, L.; INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (EDS.). Climate change 2014: synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2015.
PACTO GLOBAL BRASIL. Objetivos do desenvolvimento sustentável. Disponível em: < https://www.pactoglobal.org.br/ods >. Acesso em: 16 de janeiro de 2022.
PALHARES, Dayana D. et al. Produção de hidrogênio por eletrólise alcalina da água e energia solar. 2016.
PBMC, 2014: Impactos, vulnerabilidades e adaptação às mudanças climáticas. Contribuição do Grupo de Trabalho 2 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas [Assad, E.D., Magalhães, A. R. (eds.)]. COPPE. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, 414 pp.
PIRES, J. C. M. et al. Recent developments on carbon capture and storage: An overview Chem. Eng. Res. Des. Vol. 89, pp. 1446-1460, 2011.
POUR, Nasim. Chapter 5 - Status of bioenergy with carbon capture and storage - potential and challenges. Bioenergy with Carbon Capture and Storage. p. 85-107, Ago, 2019. https://doi.org/10.1016/B978-0-12-816229-3.00005-3
RAZA, Arshad. et al., 2016. A screening criterion for selection of suitable CO2 storage sites. Journal of Natural Gas Science and Engineering, v. 28, p. 317-327. https://doi.org/10.1016/j.jngse.2015.11.053
RAZA, Arshad. et al., 2019. Significant aspects of carbon capture and storage – A review. Petroleum. Volume 5, p. 335-340. https://doi.org/10.1016/j.petlm.2018.12.007
RHEIN, M. e RINTOUL, S. R. Observations: Ocean. Climate Change 2013. Disponível em: < https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter03_FINAL.pdf> Acesso em: 18 de dezembro de 2021.
RITCHIE, H.; ROSER, M. CO₂ and Greenhouse Gas Emissions. Our World in Data, 11 maio 2020.
ROSA, Lorenzo, et al., The water footprint of carbono capture and storage Technologies. Renewable and Sustainable Energy Reviews. Volume 138, Mar, 2021. https://doi.org/10.1016/j.rser.2020.110511
ROUNSEVELL. M. D. et al. 2010. A conceptual framework to assess the effects of environmental change on ecosystem services Biodivers. Biodiversity and Conservation, v. 19, p. 2823-2842. 10.1007/s10531-010-9838-5
SAEEDI, Ali. REZAEE, Reza 2012. Effect of residual natural ga saturation on multiphase flow behaviour during CO2 geo-sequestration in depleted natural gas reservoirs. Journal of Petroleum Science and Engineering, v. 82-83, p. 17-26. https://doi.org/10.1016/j.petrol.2011.12.012
SAEID, Samrand, et al., 2021. Recent advances in CO2 hidrogenation to value-added products – Current challenges and future direction. Progress in Energy and Combustion Science, v. 85. https://doi.org/10.1016/j.pecs.2021.100905
SEEG 8: Análises das emissões brasileiras de gases de efeito estufa e suas implicações para as metas de clima do Brasil 1970-2019. 2020.
SHAHBAZ, Muhammad. et al. 2021. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, v. 173. https://doi.org/10.1016/j.resconrec.2021.105734
SHING, Bhawna. et al. 2015. Material use for electricity generation with carbon dioxide capture and storage: Extending life cycle analysis indices for material accounting. Resources, Conservation and Recycling, v. 100, p. 49-57. https://doi.org/10.1016/j.resconrec.2015.03.010
SILVA, F. M. et al.2005. Desenvolvimento sustentável e química verde. Química nova, v. 28, https://doi.org/10.1590/S0100-40422005000100019
SOBRINHO, J. F. A. S. 2013. Emprego de óxidos de zinco e titânio na oxidação fotocatalítica do azul de metileno.
STYRING, P. ARMSTRONG, K. 2011. Catalytic carbon dioxide conversions to value-added chemicals. Chimica Oggi, v. 29, p. 34-37. Disponível em: https://www.scopus.com/record/display.uri?eid=2-s2.0-84856170817&origin=inward&txGid=ef030e5d0dc00b33e2fccdaff8f46cf9
SVARSTAD, Hanne. et al. 2018. Discursive biases of the environmental research framework DPSIR. Land Use Policy, v. 25, p. 116 – 125. https://doi.org/10.1016/j.landusepol.2007.03.005
TAPIA, J. F. et al. 2018. A review of optimization and decision-making models for the planning of capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption. Vol. 13. https://doi.org/10.1016/j.spc.2017.10.001
TOLMASQUIM, M. T. et al.2007. Matriz energética brasileira: uma prospectiva. Novos Estudos - CEBRAP, n. 79, p. 47–69.
TROST, Barry M. The atom economy--a search for synthetic efficiency. Science, v. 254, n. 5037, p. 1471-1477, 1991. 10.1126/science.1962206
UNITED NATIONS. Um water. Disponível em: < https://www.unwater.org/water-facts/climate-change/>. Acesso em: 18 de dezembro de 2021.
Vision for Bioenergy and Biobased Products in the United States (2006). Biomass Research and Development Initiative. [S.D.]. Disponível em: < https://www1.eere.energy.gov/bioenergy/pdfs/final_2006_vision.pdf >. Acesso em: 16 de jan. de 2022.
WORLD RESOURCES INSTITUTE (WRI). 4 Charts Explanin Greenhouse Gas Emissions by Countries and Sectors. Disponível em: https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors Acesso em: 06/05/2021.
YAASHIKAA, P. R. et al. 2019. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, v. 33, p. 131-147. https://doi.org/10.1016/j.jcou.2019.05.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Latin American Journal of Energy Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
O autor, no ato da submissão do artigo, transfere o direito autoral ao periódico.