Non-invasive brain stimulation
clinical applicability, access to treatment and future directions
DOI:
https://doi.org/10.47456/rbps.v26i1.46477Keywords:
Transcranial Magnetic Stimulation, Transcranial Direct Current Stimulation, Vagus Nerve Stimulation, RehabilitationAbstract
Introduction: Non-invasive neuromodulation (NmNI) encompasses a set of techniques that modulate neuronal activity without the need for surgery or implants. Interest in these techniques is growing, especially regarding their applicability and the translation of research protocol results into clinical practice. Consequently, questions arise about the safety of these procedures, their physiological effects, and the mechanisms of brain action. Objective: To discuss the applicability, effects, and barriers to treatment access and explore future directions for research and clinical practice. Methods: This is a narrative literature review that includes clinical trials, systematic reviews, meta-analyses, and opinion articles, with searches conducted in the PubMed, Scopus, Google Scholar and Web of Science databases. Discussion: NmNI techniques tend to be less invasive, safer, and more accessible than neurosurgical interventions, providing an alternative to pharmacological strategies with few side effects. Aspects such as portability, scalability, cost-effectiveness, and potential for home use should be considered. Although widely used in rehabilitation, further standardization of application parameters and expanded access to the entire population are still needed. Conclusion: Future research in NmNI should focus on protocol standardization, deepening neurobiological foundations, and expanding to new clinical contexts. Treatment access is limited by financial, geographic, and educational barriers, making it essential to develop policies that ensure its inclusion in public healthcare.
Downloads
References
Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehabil. 2022 Mar 1;68(1):1-8. doi: 10.5606/tftrd.2022.10608. PMID: 35949977; PMCID: PMC9305642. DOI: https://doi.org/10.5606/tftrd.2022.10608
Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013 Oct 15;219(2):297-311. doi: 10.1016/j.jneumeth.2013.07.016. Epub 2013 Aug 14. PMID: 23954780; PMCID: PMC3833074. DOI: https://doi.org/10.1016/j.jneumeth.2013.07.016
Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, et al. Transcranial photobiomodulation improves cognitive performance in young healthy adults: a systematic review and meta-analysis. Photobiomodul Photomed Laser Surg. 2019 Oct;37(10):635-643. doi: 10.1089/photob.2019.4673. Epub 2019 Sep 24. PMID: 31549906; PMCID: PMC6818490. DOI: https://doi.org/10.1089/photob.2019.4673
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol. 2024 Mar 21;12:1372158. doi: 10.3389/fbioe.2024.1372158. PMID: 38576448; PMCID: PMC10991759. DOI: https://doi.org/10.3389/fbioe.2024.1372158
Beisteiner R, Lozano A, Di Lazzaro V, George MS, Hallett M. Clinical recommendations for non-invasive ultrasound neuromodulation. Brain Stimul. 2024 Jul-Aug;17(4):890-895. doi: 10.1016/j.brs.2024.07.013. Epub 2024 Jul 29. PMID: 39084519. DOI: https://doi.org/10.1016/j.brs.2024.07.013
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, et al. Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum. 2019 Dec;18(6):1064-1097. doi: 10.1007/s12311-019-01041-5. PMID: 31165428; PMCID: PMC6867990. DOI: https://doi.org/10.1007/s12311-019-01041-5
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015 Jun;126(6):1071-1107. doi: 10.1016/j.clinph.2015.02.001. Epub 2015 Feb 10. PMID: 25797650; PMCID: PMC6350257. DOI: https://doi.org/10.1016/j.clinph.2015.02.001
Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 2018 May-Jun;11(3):492-500. doi: 10.1016/j.brs.2017.12.009. Epub 2017 Dec 29. PMID: 29361441; PMCID: PMC6487660. DOI: https://doi.org/10.1016/j.brs.2017.12.009
McGeoch PD. Can vestibular stimulation be used to treat obesity?: Vestibular stimulation targeting the otoliths could rebalance energy homeostasis to trigger a leaner body habitus and thus treat metabolic syndrome. Bioessays. 2019 Feb;41(2). doi: 10.1002/bies.201800197. Epub 2019 Jan 7. PMID: 30614540. DOI: https://doi.org/10.1002/bies.201800197
Garcia-Isidoro S, Castellanos-Sanchez VO, Iglesias-Lopez E, Perpiña-Martinez S. Invasive and non-invasive electrical neuromodulation in trigeminal nerve neuralgia: a systematic review and meta-analysis. Curr Neuropharmacol. 2021;19(3):320-333. doi: 10.2174/1570159X18666200729091314. PMID: 32727329; PMCID: PMC8033962. DOI: https://doi.org/10.2174/1570159X18666200729091314
Gerges ANH, Williams EER, Hillier S, Uy J, Hamilton T, Chamberlain S, et al. Clinical application of transcutaneous auricular vagus nerve stimulation: a scoping review. Disabil Rehabil. 2024 Feb 16:1-31. doi: 10.1080/09638288.2024.2313123. Epub ahead of print. PMID: 38362860. DOI: https://doi.org/10.1080/09638288.2024.2313123
Huo C, Xu G, Xie H, Chen T, Shao G, Wang J, et al. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen Res. 2024 Jul 1;19(7):1517-1522. doi: 10.4103/1673-5374.387970. Epub 2023 Nov 8. PMID: 38051894; PMCID: PMC10883499. DOI: https://doi.org/10.4103/1673-5374.387970
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, et al. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci. 2023 Aug 14;17:1247104. doi: 10.3389/fnhum.2023.1247104. PMID: 37645690; PMCID: PMC10461063. DOI: https://doi.org/10.3389/fnhum.2023.1247104
Haider A, Elghazawy NH, Dawoud A, Gebhard C, Wichmann T, Sippl W, et al. Translational molecular imaging and drug development in Parkinson’s disease. Mol Neurodegener. 2023 Feb 10;18(1):11. doi: 10.1186/s13024-023-00600-z. PMID: 36759912; PMCID: PMC9912681. DOI: https://doi.org/10.1186/s13024-023-00600-z
D’Arcy RCN, Greene T, Greene D, Frehlick Z, Fickling SD, Campbell N, et al. Portable neuromodulation induces neuroplasticity to re-activate motor function recovery from brain injury: a high-density MEG case study. J Neuroeng Rehabil. 2020 Dec 1;17(1):158. doi: 10.1186/s12984-020-00772-5. PMID: 33261623; PMCID: PMC7708191. DOI: https://doi.org/10.1186/s12984-020-00772-5
Khan MNA, Ghafoor U, Yoo HR, Hong KS. Acupuncture enhances brain function in patients with mild cognitive impairment: evidence from a functional-near infrared spectroscopy study. Neural Regen Res. 2022 Aug;17(8):1850-1856. doi: 10.4103/1673-5374.332150. PMID: 35017448; PMCID: PMC8820726. DOI: https://doi.org/10.4103/1673-5374.332150
McKendrick R, Parasuraman R, Ayaz H. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci. 2015 Mar 9;9:27. doi: 10.3389/fnsys.2015.00027. PMID: 25805976; PMCID: PMC4353303. DOI: https://doi.org/10.3389/fnsys.2015.00027
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol. 2023 Jun;150:131-175. doi: 10.1016/j.clinph.2023.03.010. Epub 2023 Mar 29. PMID: 37068329; PMCID: PMC10192339. DOI: https://doi.org/10.1016/j.clinph.2023.03.010
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol. 2023 Jul;601(14):2827-2851. doi: 10.1113/JP281885. Epub 2023 Jun 8. PMID: 37254441; PMCID: PMC10952180. DOI: https://doi.org/10.1113/JP281885
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology. 2023 Jan;48(1):191-208. doi: 10.1038/s41386-022-01453-8. Epub 2022 Oct 5. PMID: 36198876; PMCID: PMC9700722. DOI: https://doi.org/10.1038/s41386-022-01453-8
Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9:527-65. doi: 10.1146/annurev.bioeng.9.061206.133100. PMID: 17444810. DOI: https://doi.org/10.1146/annurev.bioeng.9.061206.133100
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. PMID: 10990547; PMCID: PMC2270099. DOI: https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
Areas FZS, Areas GPT, Moll Neto R. Giovanni Aldini and his contributions to non-invasive brain stimulation. Arq Neuropsiquiatr. 2020;78(11). DOI: https://doi.org/10.1590/0004-282x20200080
Creutzfeld OD, Fromm GH, Kapp H. Influência das correntes CC transcorticais na atividade neuronal cortical. Neurol Exp. 1962;5:436-52. DOI: https://doi.org/10.1016/0014-4886(62)90056-0
Bindman LJ, Lippold OCJ, Redfearn JWT. Ação de breves correntes polarizadoras no córtex cerebral do rato: Durante o fluxo de corrente e na produção de efeitos posteriores duradouros. J Physiol. 1964;172:369-82. DOI: https://doi.org/10.1113/jphysiol.1964.sp007425
Artola A, Brocher S, Singer W. Diferentes limiares dependentes de voltagem para induzir depressão de longo prazo e potenciação de longo prazo em fatias do córtex visual de ratos. Nature. 1990;347:69-72. DOI: https://doi.org/10.1038/347069a0
Moriwaki A. Correntes polarizadoras aumentam o acúmulo de AMP cíclico induzido por noradrenalina no córtex cerebral de ratos. Brain Res. 1991;544:248-52. DOI: https://doi.org/10.1016/0006-8993(91)90061-Y
Malenka RC, Nicoll RA. Potenciação de longo prazo – uma década de progresso? Science. 1999;285:1870-4. DOI: https://doi.org/10.1126/science.285.5435.1870
Wagner T, Rushmore J, Eden U, Valero-Cabre A. Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex. 2009 Oct;45(9):1025-34. doi: 10.1016/j.cortex.2008.10.002. PMID: 19027896; PMCID: PMC3417820. DOI: https://doi.org/10.1016/j.cortex.2008.10.002
Peinemann A, Lehner C, Mentschel C, Munchau A, Conrad B, Siebner HR. Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition. Neurosci Lett. 2000;296:21-4. DOI: https://doi.org/10.1016/S0304-3940(00)01616-5
Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res. 2000;133:425-30. DOI: https://doi.org/10.1007/s002210000432
Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398-403. DOI: https://doi.org/10.1212/WNL.48.5.1398
Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F, et al. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol. 2011 May;105(5):2150-6. doi: 10.1152/jn.00781.2010. PMID: 21346213. DOI: https://doi.org/10.1152/jn.00781.2010
Kirkovski M, Donaldson PH, Do M, Speranza BE, Albein-Urios N, Oberman LM, Enticott PG. A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Struct Funct. 2023 May;228(3-4):717-49. doi: 10.1007/s00429-023-02634-x. PMID: 37072625; PMCID: PMC10113132. DOI: https://doi.org/10.1007/s00429-023-02634-x
Park JH. Reliability of theta burst stimulation as a neuromodulation tool. J Neurophysiol. 2022 Jun 1;127(6):1532-4. doi: 10.1152/jn.00507.2021. PMID: 35544758. DOI: https://doi.org/10.1152/jn.00507.2021
Qiu S, Wang S, Peng W, Yi W, Zhang C, Zhang J, He H. Continuous theta-burst stimulation modulates resting-state EEG microstates in healthy subjects. Cogn Neurodyn. 2022 Jun;16(3):621-31. doi: 10.1007/s11571-021-09726-6. PMID: 35603056; PMCID: PMC9120322. DOI: https://doi.org/10.1007/s11571-021-09726-6
Thompson SL, O’Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW. A review of parameter settings for invasive and non-invasive vagus nerve stimulation (VNS) applied in neurological and psychiatric disorders. Front Neurosci. 2021 Jul 13;15:709436. doi: 10.3389/fnins.2021.709436. PMID: 34326720; PMCID: PMC8313807. DOI: https://doi.org/10.3389/fnins.2021.709436
Jiang N, Wei J, Li G, Wei B, Zhu FF, Hu Y. Effect of dry-electrode-based transcranial direct current stimulation on chronic low back pain and low back muscle activities: A double-blind sham-controlled study. Restor Neurol Neurosci. 2020;38(1):41-54. doi: 10.3233/RNN-190922. PMID: 31683491. DOI: https://doi.org/10.3233/RNN-190922
Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci (Lond). 2022 May 13;136(9):695-709. doi: 10.1042/CS20210507. PMID: 35536161; PMCID: PMC9093220. DOI: https://doi.org/10.1042/CS20210507
Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020 Apr;236(4):588-611. doi: 10.1111/joa.13122. PMID: 31742681; PMCID: PMC7083568. DOI: https://doi.org/10.1111/joa.13122
Badran BW, Brown JC, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 2018 Jul-Aug;11(4):947-8. doi: 10.1016/j.brs.2018.06.003. PMID: 29895444; PMCID: PMC6607436. DOI: https://doi.org/10.1016/j.brs.2018.06.003
Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002 Jan;15(1):35-7. doi: 10.1002/ca.1089. PMID: 11835542. DOI: https://doi.org/10.1002/ca.1089
Kreisberg E, Esmaeilpour Z, Adair D, Khadka N, Datta A, Badran BW, et al. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimul. 2021 Nov-Dec;14(6):1419-30. doi: 10.1016/j.brs.2021.09.001. PMID: 34517143; PMCID: PMC8608747. DOI: https://doi.org/10.1016/j.brs.2021.09.001
Peng X, Baker-Vogel B, Sarhan M, Short EB, Zhu W, Liu H, et al. Left or right ear? A neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul. 2023 Jul-Aug;16(4):1144-53. doi: 10.1016/j.brs.2023.07.050. PMID: 37517466. DOI: https://doi.org/10.1016/j.brs.2023.07.050
Fallgatter AJ, Neuhauser B, Herrmann MJ, Ehlis AC, Wagener A, Scheuerpflug P, et al. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J Neural Transm (Vienna). 2003 Dec;110(12):1437-43. doi: 10.1007/s00702-003-0087-6. PMID: 14666414. DOI: https://doi.org/10.1007/s00702-003-0087-6
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front Hum Neurosci. 2021 Mar 23;14:568051. doi: 10.3389/fnhum.2020.568051. PMID: 33854421; PMCID: PMC8040977. DOI: https://doi.org/10.3389/fnhum.2020.568051
RoaFiore L, Meyer T, Peixoto T, Irazoqui P. Label-Free Functional Imaging of Vagus Nerve Stimulation-Evoked Potentials at the Cortical Surface. Res Sq [Preprint]. 2024 May 2.3.rs-4295137. doi: 10.21203/rs.3.rs-4295137/v1. Update in: NPJ Biosens. 2024;1(1):11. doi: 10.1038/s44328-024-00012-z. PMID: 38746403; PMCID: PMC11092866. DOI: https://doi.org/10.1038/s44328-024-00012-z
Bunday KL, Perez MA. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol. 2012 Dec 18;22(24):2355-61. doi: 10.1016/j.cub.2012.10.046. PMID: 23200989; PMCID: PMC3742448. DOI: https://doi.org/10.1016/j.cub.2012.10.046
Brown JC, Higgins ES, George MS. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation. 2022 Dec;25(8):1289-98. doi: 10.1016/j.neurom.2021.09.003. PMID: 35088731; PMCID: PMC10479373. DOI: https://doi.org/10.1016/j.neurom.2021.09.003
George MS, Lisanby SH, Avery D, et al. Terapia diária de estimulação magnética transfrontal esquerda para transtorno depressivo maior: um ensaio randomizado controlado por sham. Psiquiatria Arch Gen. 2010;67(5):507-16. DOI: https://doi.org/10.1001/archgenpsychiatry.2010.46
Mantovani A, Pavlicova M, Avery D, et al. Long-term efficacy of repeated daily prefrontal transcranial magnetic stimulation (rTMS) in treatment-resistant depression. Depress Anxiety. 2012;29(10):883-90. DOI: https://doi.org/10.1002/da.21967
Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology. 2023 Jan;48(1):113-20. doi: 10.1038/s41386-022-01370-w. PMID: 35810199; PMCID: PMC9700665. DOI: https://doi.org/10.1038/s41386-022-01370-w
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, et al. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol. 2021 Oct;132(10):2639-53. doi: 10.1016/j.clinph.2021.06.014. PMID: 34344609. DOI: https://doi.org/10.1016/j.clinph.2021.06.014
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits. 2017 Mar 9;11:15. doi: 10.3389/fncir.2017.00015. PMID: 28337129; PMCID: PMC5343068. DOI: https://doi.org/10.3389/fncir.2017.00015
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, et al. Neuroplasticity and non-invasive brain stimulation in the developing brain. Prog Brain Res. 2021;264:57-89. doi: 10.1016/bs.pbr.2021.04.003. PMID: 34167665. DOI: https://doi.org/10.1016/bs.pbr.2021.04.003
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020 Feb;131(2):474-528. doi: 10.1016/j.clinph.2019.11.002. DOI: https://doi.org/10.1016/j.clinph.2020.02.003
Sreeraj VS, Arumugham SS, Venkatasubramanian G. Clinical Practice Guidelines for the Use of Transcranial Direct Current Stimulation in Psychiatry. Indian J Psychiatry. 2023 Feb;65(2):289-96. doi: 10.4103/indianjpsychiatry.indianjpsychiatry_496_22. PMID: 37063621; PMCID: PMC10096202. DOI: https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_496_22
Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017 Jan;128(1):56-92. doi: 10.1016/j.clinph.2016.10.087. PMID: 27866120. DOI: https://doi.org/10.1016/j.clinph.2016.10.087
Shi X, Zhao L, Luo H, Deng H, Wang X, Ren G, et al. Transcutaneous Auricular Vagal Nerve Stimulation Is Effective for the Treatment of Functional Dyspepsia: A Multicenter, Randomized Controlled Study. Am J Gastroenterol. 2024 Mar 1;119(3):521-31. doi: 10.14309/ajg.0000000000002548. PMID: 37787432. DOI: https://doi.org/10.14309/ajg.0000000000002548
Okdahl T, Kufaishi H, Kornum D, Bertoli D, Krogh K, Knop K, et al. Transcutaneous vagus nerve stimulation has no anti-inflammatory effect in diabetes. Sci Rep. 2024 Sep 9;14(1):21042. doi: 10.1038/s41598-024-72139-y. PMID: 39251831; PMCID: PMC11385211. DOI: https://doi.org/10.1038/s41598-024-72139-y
Jiang Y, Cao Z, Ma H, Wang G, Wang X, Wang Z, et al. Auricular vagus nerve stimulation exerts anti-inflammatory effects and immune regulatory function in a 6-OHDA model of Parkinson’s disease. Neurochem Res. 2018;43:2155–64. doi: 10.1007/s11064-018-2639-z. DOI: https://doi.org/10.1007/s11064-018-2639-z
Caravaca AS, Gallina AL, Tarnawski L, Shavva VS, Colas RA, Dalli J, et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc Natl Acad Sci U S A. 2022 May 31;119(22). doi: 10.1073/pnas.2023285119. PMID: 35622894; PMCID: PMC9295760. DOI: https://doi.org/10.1073/pnas.2023285119
Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120(12):2008-39. doi: 10.1016/j.clinph.2009.08.016. PMID: 19833552. DOI: https://doi.org/10.1016/j.clinph.2009.08.016
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin Neurophysiol. 2021;132(1):269–306. doi: 10.1016/j.clinph.2020.12.003. PMID: 33414004. DOI: https://doi.org/10.1016/j.clinph.2020.10.003
Najib U, Horvath JC. Transcranial Magnetic Stimulation (TMS) Safety Considerations and Recommendations. In: Rotenberg A, Horvath J, Pascual-Leone A, editors. Transcranial Magnetic Stimulation. Neuromethods, vol 89. New York: Humana Press; 2014. DOI: https://doi.org/10.1007/978-1-4939-0879-0_2
Horvath JC, Perez JM, Forrow L, Fregni F, Pascual-Leone A. Transcranial magnetic stimulation: a historical evaluation and future prognosis of therapeutically relevant ethical concerns. J Med Ethics. 2011 Mar;37(3):137-43. doi: 10.1136/jme.2010.039966. PMID: 21106996. DOI: https://doi.org/10.1136/jme.2010.039966
Kumar R, Chen R, Ashby P. Safety of transcranial magnetic stimulation in patients with implanted deep brain stimulators. Mov Disord. 1999;14(1):157-8. doi: 10.1002/1531-8257(199901)14:1<157::aid-mds1014>3.0.co;2-4. PMID: 9918342. DOI: https://doi.org/10.1002/1531-8257(199901)14:1<157::AID-MDS1027>3.3.CO;2-L
Redgrave J, Day D, Leung H, Laud PJ, Ali A, Lindert R, et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018 Nov-Dec;11(6):1225-38. doi: 10.1016/j.brs.2018.08.010. PMID: 30217648. DOI: https://doi.org/10.1016/j.brs.2018.08.010
Kim AY, Marduy A, de Melo PS, Gianlorenco AC, Kim CK, Choi H, et al. Safety of transcutaneous auricular vagus nerve stimulation (taVNS): a systematic review and meta-analysis. Sci Rep. 2022 Dec 21;12(1):22055. doi: 10.1038/s41598-022-25864-1. PMID: 36543841; PMCID: PMC9772204. DOI: https://doi.org/10.1038/s41598-022-25864-1
Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Front Neurosci. 2020 Apr 28;14:284. doi: 10.3389/fnins.2020.00284. PMID: 32410932; PMCID: PMC7199464. DOI: https://doi.org/10.3389/fnins.2020.00284
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-809. doi: 10.1016/j.clinph.2017.06.001. PMID: 28709880; PMCID: PMC5985830. DOI: https://doi.org/10.1016/j.clinph.2017.06.001
Zis P, Shafique F, Hadjivassiliou M, Blackburn D, Venneri A, Iliodromiti S, et al. Safety, Tolerability, and Nocebo Phenomena During Transcranial Magnetic Stimulation: A Systematic Review and Meta-Analysis of Placebo-Controlled Clinical Trials. Neuromodulation. 2020 Apr;23(3):291-300. doi: 10.1111/ner.12946. PMID: 30896060. DOI: https://doi.org/10.1111/ner.12946
Salehinejad MA, Ghanavati E, Glinski B, Hallajian AH, Azarkolah A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav. 2022 Sep;12(9). doi: 10.1002/brb3.2724. PMID: 35938945; PMCID: PMC9480913. DOI: https://doi.org/10.1002/brb3.2724
Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev. 2019 Sep;104:118-40. doi: 10.1016/j.neubiorev.2019.06.007. PMID: 31271802; PMCID: PMC7293143. DOI: https://doi.org/10.1016/j.neubiorev.2019.06.007
Tan C, Qiao M, Ma Y, Luo Y, Fang J, Yang Y. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in the treatment of depressive disorder: A systematic review and meta-analysis of randomized controlled trials. J Affect Disord. 2023 Sep 15;337:37-49. doi: 10.1016/j.jad.2023.05.048. PMID: 37230264. DOI: https://doi.org/10.1016/j.jad.2023.05.048
Costa V, Gianlorenço AC, Andrade MF, Camargo L, Menacho M, Arias Avila M, et al. Transcutaneous vagus nerve stimulation effects on chronic pain: systematic review and meta-analysis. Pain Rep. 2024 Aug 7;9(5). doi: 10.1097/PR9.0000000000001171. PMID: 39131814; PMCID: PMC11309651. DOI: https://doi.org/10.1097/PR9.0000000000001171
Isaacson SH, Peckham E, Tse W, Waln O, Way C, Petrossian MT, et al. Prospective Home-use Study on Non-invasive Neuromodulation Therapy for Essential Tremor. Tremor Other Hyperkinet Mov (N Y). 2020 Aug 14;10:29. doi: 10.5334/tohm.59. PMID: 32864188; PMCID: PMC7427656. DOI: https://doi.org/10.5334/tohm.59
Corrêa FI, Carneiro Costa G, Leite Souza P, Marduy A, Parente J, Ferreira da Cruz S, et al. Additive effect of transcranial direct current stimulation (tDCS) in combination with multicomponent training on elderly physical function capacity: a randomized, triple blind, controlled trial. Physiother Theory Pract. 2023 Nov 2;39(11):2352-65. doi: 10.1080/09593985.2022.2081638. PMID: 35619246. DOI: https://doi.org/10.1080/09593985.2022.2081638
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain: A systematic review. Neuroimage. 2022 Sep;258:119351. doi: 10.1016/j.neuroimage.2022.119351. PMID: 35659993. DOI: https://doi.org/10.1016/j.neuroimage.2022.119351
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Health Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors and reviewers must disclose any financial, professional, or personal conflicts of interest that could influence the results or interpretations of the work. This information will be treated confidentially and disclosed only as necessary to ensure transparency and impartiality in the publication process.
Copyright
RBPS adheres to the CC-BY-NC 4.0 license, meaning authors retain copyright of their work submitted to the journal.
- Originality Declaration: Authors must declare that their submission is original, has not been previously published, and is not under review elsewhere.
- Publication Rights: Upon submission, authors grant RBPS the exclusive right of first publication, subject to peer review.
- Additional Agreements: Authors may enter into non-exclusive agreements for the distribution of the RBPS-published version (e.g., in institutional repositories or as book chapters), provided the original authorship and publication by RBPS are acknowledged.
Authors are encouraged to share their work online (e.g., institutional repositories or personal websites) after initial publication in RBPS, with appropriate citation of authorship and original publication.
Under the CC-BY-NC 4.0 license, readers have the rights to:
- Share: Copy and redistribute the material in any medium or format.
- Adapt: Remix, transform, and build upon the material.
These rights cannot be revoked, provided the following terms are met:
- Attribution: Proper credit must be given, a link to the license provided, and any changes clearly indicated.
- Non-Commercial: The material cannot be used for commercial purposes.
- No Additional Restrictions: No legal or technological measures may be applied to restrict others from doing anything the license permits.