Aplicación de análisis estadístico para la validación de parámetros en la medición del desempeño de la vulnerabilidad de la red vial

Autores/as

  • João Evangelista Dantas dos Santos Universidade Federal do Ceará
  • Bruno Vieira Bertoncini Universidad Federal de Ceará https://orcid.org/0000-0002-1434-1960

DOI:

https://doi.org/10.47456/bjpe.v10i2.44663

Palabras clave:

Vulnerabilidad de la Red Vial, Parámetros de Desempeño, Análisis Estadístico, Topología.

Resumen

La forma de la red vial influye en el tiempo de viaje de los usuarios durante interrupciones. Sin embargo, estudios sobre vulnerabilidad vial a menudo ignoran esta característica, lo que puede llevar a conclusiones incorrectas. Este trabajo analiza el impacto de la elección del parámetro de desempeño en la evaluación de la vulnerabilidad, utilizando redes regulares e irregulares como modelos. La investigación incluyó una revisión de literatura sobre topología y vulnerabilidad vial, modelización y simulación de dos escenarios, y análisis de resultados mediante estadística descriptiva y pruebas paramétricas. Los resultados mostraron que el tiempo de viaje es un parámetro sensible a la forma de la red, con redes irregulares presentando tiempos mayores que las regulares. En contraste, los parámetros de flujo y velocidad no mostraron diferencias significativas entre los tipos de red. La selección de parámetros adecuados es crucial para comprender el impacto de las interrupciones en el sistema de transporte. Dado que el tiempo de viaje es sensible a la forma de la red, debe considerarse en la planificación y gestión viales. Los hallazgos de este estudio apoyan a los gestores públicos en la toma de decisiones, la comunicación con la sociedad y el desarrollo de ciudades más resilientes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

João Evangelista Dantas dos Santos, Universidade Federal do Ceará

Candidato a doctorado en el Programa de Posgrado en Ingeniería de Transporte, enfocado en la Operación y Planificación de Sistemas de Transporte con énfasis en Logística y Transporte de Carga. - Título de maestría en Ingeniería de Transporte de la Universidad Federal de Ceará (2014-2016), especializado en Planificación y Operación de Sistemas de Transporte, participando en la Línea de Investigación de Transporte de Carga y Logística. Su investigación trata sobre el Análisis de la Vulnerabilidad de las Rutas de Transporte Urbano de Carga, abordando la aplicación de conceptos de Confiabilidad, Mantenimiento y Riesgo para medir el riesgo de eventos irregulares e impredecibles. - Especialista en Ingeniería de Seguridad Ocupacional por la Faculdade Doutor Leão Sampaio. - Licenciado en Ingeniería de Producción Mecánica por la URCA - Universidad Regional do Cariri (2009-2014), con una propuesta de usar la metodología DMAIC para evaluar los conceptos de Manufactura Esbelta y SMED en el departamento de Inyección de Plástico. - Título técnico en Seguridad Ocupacional del SENAI - Servicio Nacional de Aprendizaje Industrial (2008-2010). - Fue Profesor Universitario y Coordinador del Programa de Pregrado en Ingeniería de Producción, Ingeniería Civil, Sistemas de Información y Sistemas para Internet, ofrecido por el Centro Universitario Católico de Quixadá (UNICATÓLICA). - Fue Profesor Universitario en el Programa de Pregrado en Ingeniería de Producción e Ingeniería Civil ofrecido por la Faculdade Paraíso do Ceará (FAP). - Actualmente, es Profesor Sustituto en el Programa de Pregrado en Ingeniería de Producción Mecánica ofrecido por la Universidad Regional do Cariri (URCA).

Bruno Vieira Bertoncini, Universidad Federal de Ceará

Profesor Asociado del Departamento de Ingeniería de Transportes de la Universidad Federal de Ceará. Tiene una Licenciatura en Ingeniería Civil por la Universidad Estadual de Maringá (2005), una Maestría en Ingeniería de Transportes por la Escuela de Ingeniería de São Carlos de la Universidad de São Paulo (2007), en el área de Planificación y Operación de Sistemas de Transporte, y un Doctorado en Ciencias por el Programa de Posgrado en Ingeniería de Transportes de la Escuela de Ingeniería de São Carlos de la Universidad de São Paulo, en el área de Planificación y Operación en Sistemas de Transportes (2010). Becario del Programa Nacional de Posdoctorado (PNPD), financiado por CAPES, en el Programa de Posgrado en Ingeniería de Transportes de la UFC (2011/2012). Se convirtió en Profesor del Departamento de Ingeniería de Transportes de la Universidad Federal de Ceará en 2012. Actualmente es Director del Centro de Tecnología de la Universidad Federal de Ceará. Se convirtió en Becario de Productividad en Investigación del CNPq en 2016. Actualmente es Director Científico de la Asociación Nacional de Investigación y Enseñanza en Ingeniería de Transportes (2023/2024). Desarrolla investigaciones en los siguientes temas: Planificación de Sistemas de Transportes; Transporte y logística de carga; Estudio de emisiones de contaminantes atmosféricos provenientes del sector de transportes; Modelado en transportes; Estimación de matrices origen-destino sintéticas.

Citas

Acuto, F., Coelho, M. C., Fernandes, P., Giufrrè, T., Macioszek, E., & Granà, A. (2022). Assessing the Environmental Performances of Urban Roundabouts Using the VSP Methodology and AIMSUN. Energies, 15, 1371. https://doi.org/10.3390/en15041371. DOI: https://doi.org/10.3390/en15041371

Ariza-Álvarez, A., Soria-Lara, J. A., & Aguilera-Benavente, F. (2022). Planning Adaptive Strategies for Urban Transport and Land Use using Scenario-Building. XXV International Conference Living and Walking in Cities - New scenarios for safe mobility in urban areas (LWC 2021), 9-10 September 2021, Brescia, Italy. Transportation Research Procedia 60, 274-281. https://doi.org/10.1016/j.trpro.2021.12.036 DOI: https://doi.org/10.1016/j.trpro.2021.12.036

Balijepalli, C. & Oppong, O. (2014). Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. Journal of Transport Geography, 39, 145-155. https://doi.org/10.1016/j.jtrangeo.2014.06.025 DOI: https://doi.org/10.1016/j.jtrangeo.2014.06.025

Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport Policy, 9(2), 117-127. https://doi.org/10.1016/j.trpro.2021.12.036 DOI: https://doi.org/10.1016/S0967-070X(02)00011-2

Bešinović, N. (2020). Resilience in railway transport systems: a literature review and research agenda. Transportation Review, 1-22. https://doi.org/10.1080/01441647.2020.1728419 DOI: https://doi.org/10.1080/01441647.2020.1728419

Cats O. & Jenelius E. (2016). Beyond a complete failure: the impact of partial capacity degradation on public transport network vulnerability. Transportmeter B, 6(2), 77-96. DOI: https://doi.org/10.1080/21680566.2016.1267596

Cats, O., Koppenol, G. .J., & Warnier, M. (2017). Robustness assessment of link capacity reduction for complex networks: Application for public transport systems. Reliability Engineering System Safety, 167, 544-553. https://doi.org/10.1080/21680566.2016.1149260 DOI: https://doi.org/10.1016/j.ress.2017.07.009

Cavalcante, A. P. H. (2009). A Arquitetura da Cidade e os Transportes: O Caso dos Congestionamentos em Fortaleza, Ceará. Antonio Paulo de Hollanda Cavalcante. – Brasília: PPG/FAU/UnB. 347p.: 118 il.

Chen, A., Yang, C., & Kongsomsaksakul, S., Lee, M. (2007). Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks. Network Spatial Economic, 7, 241-256. https://doi.org/10.1007/s11067-006-9016-4 DOI: https://doi.org/10.1007/s11067-006-9012-5

Comes, T., Warnier, M., Feil, W., & Van de Walle, B. (2020). Critical airport infrastructure disaster resilience: A framework and simulation model for rapid adaptation. Journal Management Engineering, 36(5), 04020059. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000810 DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000798

Demir, E., Bektas, T., & Laporte, G. (2014). A review of recent research on green road freight transportation. Eur. J. Oper. Res., 237, 775-793. https://doi.org/10.1016/j.ejor.2013.12.033 DOI: https://doi.org/10.1016/j.ejor.2013.12.033

Duan, Y. & Lu, F. (2015). Robustness analysis of city road network at different granularities, in: Space-Time Integration in Geography and GIScience: Research Frontiers in the US and China, Vol. 411, Elsevier B.V., pp. 127-143. DOI: https://doi.org/10.1007/978-94-017-9205-9_8

Dunn, S. & Wilkinson, S.M. (2016). Increasing the resilience of air traffic networks using a network graph theory approach. Transp. Res. E, 90 39-50. https://doi.org/10.1016/j.tre.2016.02.007 DOI: https://doi.org/10.1016/j.tre.2015.09.011

Esfeh, M. A., Kattan, L., Lam, W. H. K., Safari, M., & Esfe, R. A. (2020). Road network vulnerability analysis considering the probability and consequence of disruptive events: A spatiotemporal incident impact approach. Transportation Research Part C 136. https://doi.org/10.1016/j.trc.2020.102560

Gao L., Liu, X., Liu, Y., Wang, P., Deng, M., Zhu, Q., & Li, H. (2019). Measuring road network topology vulnerability by Ricci curvature. Physica A, 527, 121071. https://doi.org/10.1016/j.physa.2019.04.241

Gao, L., Xu, L., Sun, G., & Shi, Y. (2019). Vulnerability analysis of urban road network from a resilience perspective. Physica A: Statistical Mechanics and its Applications, 526, 120828. https://doi.org/10.1016/j.physa.2019.121071 DOI: https://doi.org/10.1016/j.physa.2019.121071

Gu, Y., Fu, X., Liu, Z., Xu, X., & Chen, A. (2019). Performance of transportation network under perturbations: Reliability, vulnerability, and resilience. Transportation Research E, 1-16. https://doi.org/10.1016/j.tre.2019.01.001 DOI: https://doi.org/10.1016/j.tre.2019.11.003

Guidotti, R., Gardoni, P., & Chen, Y. (2017). Network reliability analysis with link and nodal weights and auxiliary nodes. Structure Safety, 65. https://doi.org/10.1016/j.strusafe.2017.01.007 DOI: https://doi.org/10.1016/j.strusafe.2016.12.001

He, S., Yu, S., Li, G., & Zhang, J. (2020). Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy, 95. https://doi.org/10.1016/j.landusepol.2020.104624 DOI: https://doi.org/10.1016/j.landusepol.2020.104576

Hong L., Ouyang M., Xu M., & Hu P. (2020). Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems. Reliability Engineer System Safety, 193 1-10. https://doi.org/10.1016/j.tranpol.2020.08.012] DOI: https://doi.org/10.1016/j.ress.2019.106622

Hong, L., Cong, H., & Zhang, S. (2020). A hybrid method for urban road network vulnerability analysis. Transport Policy, 99, 121-131. https://doi.org/10.1016/j.tranpol.

Husdal, J. (2004). Reliability/vulnerability versus costs/benefits, in: ETC 2004.

Jenelius, E., Petersen T., & Mattsson, L. (2006), “Importance and exposure in road network vulnerability analysis”. Transportation Research Part A, 40, 537-560. https://doi.org/10.1016/j.tra.2005.11.003 DOI: https://doi.org/10.1016/j.tra.2005.11.003

Jun-qiang, L., Jing, Z., Qian-wen, L., & Lin, Z. (2018). Construction of road network vulnerability evaluation index based on general travel cost. Physica A, 493, 421-429. https://doi.org/10.1016/j.physa.2017.11.018. DOI: https://doi.org/10.1016/j.physa.2017.11.018

Kavicka, A., Divis, R., Bazant, M., & Krivka, P. (2021). Simulations of road traffic at light-controlled Intersections. 33rd European Modeling & Simulation Symposium. 18th International Multidisciplinary Modeling & Simulation Multiconference. ISSN 2724-0029 ISBN 978-88-85741-57-7. DOI: https://doi.org/10.46354/i3m.2021.emss.005

Leobons, C. M., Barcellos, V., Campos, G., De, & R. A. (2019). Assessing urban transportation systems resilience: A proposal of indicators, Transportation Research Procedia 37 322 – 329. https://doi.org/10.1016/j.trpro.2018.12.200 DOI: https://doi.org/10.1016/j.trpro.2018.12.199

Li, Z., Jin, C., Hu, P., & Wang, C. (2019). Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty. Reliability Engineering System Safety, 188, 503-514. https://doi.org/10.1016/j.ress.2019.03.025 DOI: https://doi.org/10.1016/j.ress.2019.03.052

Liao, T. Y., Hu, T. Y., & Ko, Y. N. (2018). A resilience optimization model for transportation networks under disasters. National Hazards, 93(1), 469-489. https://doi.org/10.1007/s11069-018-3306-8 DOI: https://doi.org/10.1007/s11069-018-3310-3

López, F. A., Páez, A., Carrasco, J. A., & Ruminot, N. A. (2017). Vulnerability of nodes under controlled network topology and flow autocorrelation conditions. Journal Transportation Geography, 59, 77-87. https://doi.org/10.1016/j.jtrangeo.2017.01.003 DOI: https://doi.org/10.1016/j.jtrangeo.2017.02.002

Lordan, O. & Klophaus, R. (2017). Measuring the vulnerability of global airline alliances to member exits. Transportation Research, Procedia, 25(2017), 7-16. https://doi.org/10.1016/j.trpro.2017.05.178 DOI: https://doi.org/10.1016/j.trpro.2017.05.189

Lordan, O., Sallan, J.M., Simon, P., & Gonzalez-Prieto, D. (2014). Robustness of the air transport network. Transportation Research E, 68, 155-163. https://doi.org/10.1016/j.tre.2014.05.011 DOI: https://doi.org/10.1016/j.tre.2014.05.011

Mattsson, L.G., & Jenelius, E., 2015. Vulnerability and resilience of transport systems - A discussion of recent research. Transportation Research A, 81, 16-34. https://doi.org/10.1016/j.tra.2015.06.002 DOI: https://doi.org/10.1016/j.tra.2015.06.002

Muñuzuri, J., Rivas, A., Guadix, J., & Gallego, F. (2018). The use of rail freight transport for the urban distribution of goods. Procedia-Social and Behavioral Sciences, 39, 402-414. https://doi.org/10.1016/j.sbspro.2012.03.118 DOI: https://doi.org/10.1016/j.sbspro.2012.03.118

Newman, P., & Kenworthy, J. (2006). Urban design to reduce automobile dependence. Opolis: An International Journal of Suburban and Metropolitan Studies, 2(1).

Oliveira, E. L., Portugal, L. S., & Porto Jr., W. (2016. Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system. Transportation Research A, 88, 195-208. https://doi.org/10.1016/j.tra.2016.04.004 DOI: https://doi.org/10.1016/j.tra.2016.04.004

Ouyang, M., Zhao, L., Hong, L., & Pan, Z. (2014). Comparisons of complex network-based models and real train flow models to analyze Chinese railway vulnerability. Reliability Engineering System Safety, 123 38-46. https://doi.org/10.1016/j.ress.2013.10.014 DOI: https://doi.org/10.1016/j.ress.2013.10.003

Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design, 33(5), 705-725. https://doi.org/10.1068/b32045 DOI: https://doi.org/10.1068/b32045

Rahimi, A. M., Dulebenets, M. A., & Mazaheri, A. (2021). Evaluation of Microsimulation Models for Roadway Segments with Different Functional Classifications in Northern Iran. Infrastructures, 6, 46. https://doi.org/10.3390/infrastructures6030046. DOI: https://doi.org/10.3390/infrastructures6030046

Ratti, C. (2004). Space syntax: some inconsistencies. Environment and Planning b=B: Planning and Design, 31, 487-499. https://doi.org/10.1068/b3019 DOI: https://doi.org/10.1068/b3019

Renne, J., Wolshon, B., Murray-Tuite, P., & Pande, A. (2020). Emergence of resilience as a framework for state departments of transportation (DOTs) in the United States. Transportation Research D, 82, 1-11. https://doi.org/10.1016/j.trd.2020.102178 DOI: https://doi.org/10.1016/j.trd.2019.11.007

Santos, J. E. D. (2016). Análise da vulnerabilidade de rotas do transporte urbano de carga: uma abordagem baseada na medição do risco de um evento não regular e imprevisível. Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Transportes, Fortaleza.

Singh, P., Sinha, V. S. P., Vijhani, A., & Pahuja, N. (2018). Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduction, 28, 237-250. https://doi.org/10.1016/j.ijdrr.2018.03.021 DOI: https://doi.org/10.1016/j.ijdrr.2018.03.017

Snelder, M., Vanzuylen, H. J., & Immers, L. H. (2012). A framework for robustness analysis of road network for short term variations in supply. Transportation Research Part A, 46(5), 828-842. https://doi.org/10.1016/j.tra.2012.02.011 DOI: https://doi.org/10.1016/j.tra.2012.02.007

Su, Z., Li, L., Peng, H., Kurths, J., Xiao, J., & Yang, Y. (2014). Robustness of interrelated traffic networks to cascading failures. Science Rep., 4 1-7. https://doi.org/10.1038/srep05417 DOI: https://doi.org/10.1038/srep05413

Sullivan, J.L.; Novak, D.C.; Aultman-Hall, L.; & Scott, D.M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: a link-based capacity-reduction approach. Transportation Research Part A 44, 323–336. https://doi.org/10.1016/j.tra.2010.03.010 DOI: https://doi.org/10.1016/j.tra.2010.02.003

Sun, D. J. & Guan, S. (2016). Measuring vulnerability of urban metro network from line operation perspective. Transp. Res. A, 94(800), 348-359. https://doi.org/10.1080/23789689.2020.1742815 DOI: https://doi.org/10.1016/j.tra.2016.09.024

Sun, W., Bocchini, P., & Davison, B. D. (2020). Resilience metrics and measurement methods for transportation infrastructure: the state of the art. Sustainable Resilience Infrastructure, 5(3), 168-199. https://doi.org/10.1016/j.tra.2016.09.020 DOI: https://doi.org/10.1080/23789689.2018.1448663

Taylor, M. A. P.; Sekhar, S. V. C.; D’este, G. M. (2006). Application of accessibility-based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3-4), 267-291. https://doi.org/10.1007/s11067-006-9284-9 DOI: https://doi.org/10.1007/s11067-006-9284-9

Testa, A.C., Furtado, M.N., & Alipour, A. (2015). Resilience of coastal transportation networks faced with extreme climatic events, Transportation Research Rec. 2532 29–36. https://doi.org/10.3141/2532-04 DOI: https://doi.org/10.3141/2532-04

Tsitsokas, D., Kouvelas, A., & Geroliminis, N. (2021). Modelagem e otimização da alocação de espaço de corredores de ônibus dedicados em grandes redes com congestionamento. Transportation Research Part C, 127, 103082. https://doi.org/10.1016/j.trc.2021.103082 DOI: https://doi.org/10.1016/j.trc.2021.103082

Ulak, M.B., Konila, S. L. M., Kocatepe, A., Ozguven, E. E., & Arghandeh, R. (2021). Resilience characterization for multi-layer infrastructure networks, IEEE Intelligence Transportation Systems Mag. 2-13. https://doi.org/10.1109/MITS.2021.3050286

Vilarinho, C., Soares, G., Macedo, J., Tavares, R., Rossetti, R. J. F. (2014). Capability-Enhanced AIMSUN with Real-Time Signal Timing Control. EWGT2013 – 16th Meeting of the EURO Working Group on Transportation. Procedia - Social and Behavioral Sciences, 111(2014) 262-271. https://doi.org/10.1016/j.sbspro.2014.01.059 DOI: https://doi.org/10.1016/j.sbspro.2014.01.059

Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transp. Rev., 38 (4) 479-498. https://doi.org/10.1080/01441647.2017.1383532 DOI: https://doi.org/10.1080/01441647.2017.1383532

Wang, X., Koç, Y., Derrible, S., Ahmad, S.N., Pino, W.J., & Kooij, R.E., 2017. Multi-criteria robustness analysis of metro networks. Physical A, 474. https://doi.org/10.1016/j.physa.2017.01.041 DOI: https://doi.org/10.1016/j.physa.2017.01.072

Wismans, L., Romph, E., Friso, K., Zantema, K. (2014). Real time traffic models, decision support for traffic management. 12th International Conference on Design and Decision Support Systems in Architecture and Urban Planning, DDSS. Procedia Environmental Sciences, 22(2014), 220-235. https://doi.org/10.1016/j.proenv.2014.11.021 DOI: https://doi.org/10.1016/j.proenv.2014.11.022

Yabe, T., Rao, P. S. C., & Ukkusuri, S. V. (2020). Regional differences in resilience of social and physical systems: Case study of Puerto Rico after Hurricane maria, Environmental Planet. B, 2399808320980744. https://doi.org/10.1177/2399808320980744 DOI: https://doi.org/10.1177/2399808320980744

Yabe, T., Tsubouchi, K., Fujiwara, N., Sekimoto, Y., & Ukkusuri, S. V. (2020). Understanding post-disaster population recovery patterns. Journal of The Royal Society Interface, 17(163), 20200439. https://doi.org/10.1098/rsif.2020.0439 DOI: https://doi.org/10.1098/rsif.2019.0532

Yang, Y., Liu, Y., Zhou, M., Li, F., & Sun, C. (2015). Robustness assessment of urban rail transit based on complex network theory: A case study of the Beijing Subway. Safety Science, 79 149–162. https://doi.org/10.1016/j.ssci.2015.06.017 DOI: https://doi.org/10.1016/j.ssci.2015.06.006

Zhang, J., Fricker, J. D., & Landman, J. A. (2015). Enhancing network resilience by developing bridge management strategies: A case study of Indiana. Transportation Research Record, 2459(1), 37-45. https://doi.org/10.1016/j.jtrangeo.2015.05.006

Zhang, X., Miller-Hooks, E., & Denny, K. (2015). Assessing the role of network topology in transportation network resilience. Journal Transportation Geography, 46, 35-45. https://doi.org/10.3141/2459-05 DOI: https://doi.org/10.1016/j.jtrangeo.2015.05.006

Zhou, Y., Wang, J., & Huang, G. Q. (2019). Efficiency and robustness of weighted air transport networks. Transportation Research, E 122. https://doi.org/10.1016/j.tre.2019.01.007 DOI: https://doi.org/10.1016/j.tre.2018.11.008

Publicado

2024-06-10

Cómo citar

Santos, J. E. D. dos, & Bertoncini, B. V. (2024). Aplicación de análisis estadístico para la validación de parámetros en la medición del desempeño de la vulnerabilidad de la red vial. Brazilian Journal of Production Engineering, 10(2), 326–339. https://doi.org/10.47456/bjpe.v10i2.44663