Production of fuel from waste tetra pak packaging in a fluidized bed: identification of factors that affect the mixture of sand particles and LDPE/AL composite
DOI:
https://doi.org/10.47456/bjpe.v7i5.36926Keywords:
Aluminum, Fluid dynamics, Energy, Carton packagesAbstract
Integrated routes for catalytic pyrolysis and refining enable the conversion of polyolefins from post-consumer carton packaging waste into fuels and chemical products of commercial interest. This technology contributes to the reduction of environmental impacts resulting from the inappropriate disposal of these wastes. In addition, the recovery of the LDPE/Al composite (low-density polyethylene and aluminum) by pyrolysis allows obtaining products with high added values, such as paraffin and aluminum with high purity. The originality of this research is due to the development of a cylindrical column of fluidized bed with a guillotine system. Insertion of a guillotine system to cylindrical column allows evaluating the axial concentration of LDPE/Al composite particles. In addition, this research aims to investigate the effect of the air injection velocity and the mass fraction of LDPE/Al composite on the particle mixing index (Im), using an experimental design 3². The results show that the air injection velocity and the mass fraction of LDPE/Al composite affect the mixing index (Im). From point of view of particle mixing in the bed, data analysis indicates the fuel production from polyolefins is favored in the reactor when a gas velocity 25% above the minimum is used.
Downloads
References
Al-Salem, S. M., Lettieri, P. & Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103–129. https://doi.org/10.1016/J.PECS.2009.09.001
Armenise, S., SyieLuing, W., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J. & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158, 105265. https://doi.org/10.1016/J.JAAP.2021.105265
Barbarias, I., Lopez, G., Artetxe, M., Arregi, A., Bilbao, J. & Olazar, M. (2018). Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management, 156, 575–584.
Braido, R. S., Borges, L. E. P. & Pinto, J. C. (2018). Chemical recycling of crosslinked poly(methyl methacrylate) and characterization of polymers produced with the recycled monomer. Journal of Analytical and Applied Pyrolysis, 132, 47–55. https://doi.org/10.1016/J.JAAP.2018.03.017
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/J.BIOMBIOE.2011.01.048
Chenier, P. (2002). Survey of Industrial Chemistry. In Chemical Engineering and Processing: Process Intensification (3rd editio, Vol. 32, Issue 3). Kluwer Academic/Plenum Publishers. https://doi.org/10.1016/0255-2701(93)80016-a
Daleffe, R. V., Ferreira, M. C. & Freire, J. T. (2005). Drying of pastes in vibro-fluidized beds: Effects of the amplitude and frequency of vibration. Drying Technology, 23(9–11), 1765–1781. https://doi.org/10.1080/07373930500209681
Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782
Jung, S. H., Cho, M. H., Kang, B. S. & Kim, J. S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009
Kaminsky, W. (2021). Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Communications, 8, 100023. https://doi.org/10.1016/J.JFUECO.2021.100023
Kang, B. S., Kim, S. G. & Kim, J. S. (2008). Thermal degradation of poly(methyl methacrylate) polymers: Kinetics and recovery of monomers using a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 81(1), 7–13. https://doi.org/10.1016/J.JAAP.2007.07.001
Kumar, S., Panda, A. K. & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893–910. https://doi.org/10.1016/J.RESCONREC.2011.05.005
Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J. & Olazar, M. (2018). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576–596. https://doi.org/10.1016/J.RSER.2017.09.032
Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. In Renewable and Sustainable Energy Reviews (Vol. 73, pp. 346–368). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.01.142
Mantegazini, D. Z., Neves, F. L., Xavier, T. P. & Bacelos, M. S. (2021). Review on Advanced Technologies for Aluminum Recovery From Carton Packages Waste Using Pyrolysis. Brazilian Journal of Production Engineering - BJPE, 117–129. https://doi.org/10.47456/bjpe.v7i1.34583
Mantegazini, D. Z., Xavier, T. P. & Bacelos, M. S. (2021). Conical spouted beds for waste valorization: Assessment of particle segregation in beds composed of sand and Tetra Pak residues. Sustainable Energy Technologies and Assessments, 47, 101334. https://doi.org/10.1016/J.SETA.2021.101334
Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/J.PSEP.2016.06.022
Nienow, A. W., Naimer, N. S. & Chiba, T. (1987). Studies of Segregation / Mixing in Fluidised Beds of Different Size Particles Studies of Segregation mixing in Fluidised Beds of Different Size Particles. The Society of Chemical Engineers, 457–460.
Olazar, M., José, M. J. S., Peñas, F. J., Aguayo, A. T. & Bilbao, J. (1993). Stability and Hydrodynamics of Conical Spouted Beds with Binary Mixtures. Industrial and Engineering Chemistry Research, 32(11), 2826–2834. https://doi.org/10.1021/ie00023a053
Orozco, S., Alvarez, J., Lopez, G., Artetxe, M., Bilbao, J. & Olazar, M. (2021). Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. Energy Conversion and Management, 229.
Santos, A. C. O. (2020). Segregação de misturas binárias de areia e compósito PEBD/Al em leito fluidizado para pirólise rápida de resíduos cartonados. Tese (Mestrado em Energia),UFES, São Mateus-ES.
Solis, M. & Silveira, S. (2020). Technologies for chemical recycling of household plastics – A technical review and TRL assessment. Waste Management, 105, 128–138. https://doi.org/10.1016/J.WASMAN.2020.01.038
Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. (2020). The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem, 13(7), 1764–1774. https://doi.org/10.1002/CSSC.201903434
Zhou, N., Dai, L., Lyu, Y., Li, H., Deng, W., Guo, F., Chen, P., Lei, H. & Ruan, R. (2021). Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 418, 129412. https://doi.org/10.1016/J.CEJ.2021.129412
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Production Engineering - BJPE
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.