Análisis bibliométrico sobre metodologías para identificar la adulteración en aceite de oliva y perspectivas de futuro

Autores/as

DOI:

https://doi.org/10.47456/bjpe.v10i4.45570

Palabras clave:

Adulteración, Aceite de oliva, Identificación

Resumen

El aceite de oliva virgen extra es un producto vulnerable a diversos tipos de adulteración, como por ejemplo mezclarlo con otros aceites vegetales o con aceites de oliva de menor calidad. En este trabajo se realizó un análisis bibliométrico sobre las metodologías para identificar adulteraciones en aceite de oliva. La base de datos Web of Science se utilizó desde 2000 hasta 2024, y las palabras clave “olive oil”, “adulteration” y “detection”, entre otros criterios. Los resultados mostraron un crecimiento exponencial en el número de publicaciones en el período. Ciencia y Tecnología de los Alimentos (66) y Química Aplicada (52) fueron las categorías con mayor número de artículos. Las principales revistas fueron “Food Chemistry” y “Journal of Agriculture and Food”. Los países que más contribuyeron a la investigación sobre el tema fueron España, China e Italia con 55, 40 y 33 artículos, respectivamente. Las palabras clave con mayor fuerza de conexión fueron adulteración (668), aceites vegetales (406), aceite de oliva (370), autenticación (335) y clasificación (245). En el escenario actual de cambio climático y eventos extremos, el desarrollo de metodologías para la trazabilidad y autenticidad de los productos será importante para la seguridad alimentaria y económica.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Nathália Fernandes Gonçalves, Universidade Federal do Espírito Santo

    Graduanda em Engenharia Química pela Universidade Federal do Espírito Santo (CEUNES/ UFES). Atualmente é aluna de iniciação científica pela Universidade Federal do Espírito Santo na área de química, no Laboratório de Preparo de Amostras e Análises Químicas (Lapaqui)/CEUNES /UFES. Tem experiência em atividades de pesquisa e desenvolvimento nas áreas de petróleo e eficiência energética.

  • Flaviane Mendonça Ambrozim, Universidade Federal do Espírito Santo

    Possui graduação em Engenharia Química pela Universidade Federal do Espírito Santo (CEUNES/ UFES) (2015) e mestrado em Engenharia Química pela Universidade Federal do Espírito Santo (CCAE/ UFES) (2019). Atualmente é técnico de laboratório na área de química na Universidade Federal do Espírito Santo. Tem experiência em fermentação em estado sólido, utilizando resíduos lignocelulósicos provenientes da agroindústria para produção de enzimas de interesse industrial.

  • Maria de Fátima Pereira dos Santos, Universidade Federal do Espírito Santo

    Possui doutorado em Química Analítica pela Universidade Federal de Santa Maria, (2009). Foi consultora em normas da Associação Brasileiras de Normas Técnicas na comissão de estudos de combustíveis e produtos especiais. Atualmente é professora Associada de Química de Petróleo/Química Analítica. Tem experiência na área de Química de Petróleo, com ênfase em controle de qualidade, validação de métodos e caracterização utilizando técnicas de medidas físico-químicas, combustão, extração por solvente, gravimétricas, potenciométricas, fluorescência de Raios-X, infravermelho, ultravioleta, quimiluminescência e temogravimetria. Participa como membro permanente do PPGEN, Mestrado em ENERGIA, linha de pesquisa Petróleo, gás e energias renováveis. Atua principalmente no estudo dos seguintes temas: comportamento de misturas e determinações de parâmetros de solubilidade em petróleos brasileiros, uso de energias alternativas de micro-ondas e ultrassom na separação de emulsões de petróleos pesados e no desenvolvimento, otimização e validação de métodos na caracterização de petróleos extrapesados, desenvolvimento de métodos para a determinação de propriedades Dielétricas e Elétricas em Petróleos e Emulsões de Petróleos.

  • Maristela Araújo Vicente, Universidade Federal do Espírito Santo

    Possui doutorado em Ciências Biológicas pela Universidade Federal de Ouro Preto (2007). Atualmente é professora Adjunto IV da Universidade Federal do Espírito Santo, locada no Departamento de Ciências Naturais. Leciona disciplinas de Química Analítica e Análise Instrumental. Tem experiência na área de Química Analítica, com ênfase em Instrumentação Analítica, atuando principalmente nos seguintes temas: preparo de amostra, petróleo, ultrassom, água, remediação. Possui 04 patentes de inovação nacional.

Referencias

Arroyo-Cerezo, A., Yang, X., Jiménez-Carvelo, A. M., Pellegrino, M., Felicita Savino, A., & Berzaghi, P. (2024). Assessment of extra virgin olive oil quality by miniaturized near infrared instruments in a rapid and non-destructive procedure. Food chemistry, 430, 137043. https://doi.org/10.1016/j.foodchem.2023.137043

Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., & Aparicio-Ruiz, R. (2005). Detection of the presence of hazelnut oil in olive oil by FT-raman and FT-MIR spectroscopy. Journal of agricultural and food chemistry, 53(16), 6201–6206. https://doi.org/10.1021/jf050595n

Blasi, F., Ianni, F., & Cossignani, L. (2024). Phenolic profiling for geographical and varietal authentication of extra virgin olive oil, Trends in Food Science & Technology, 147, 104444. https://doi.org/10.1016/j.tifs.2024.104444

Bouzembrak, Y., Steen, B., Neslo, R., Linge, J., Mojtahed, V., Marvin, H.J.P. (2018) Development of food fraud media monitoring system based on text mining, Food Control, 93, 283-296. https://doi.org/10.1016/j.foodcont.2018.06.003

Cecchi, L., Migliorini, M., & Mulinacci, N. (2021). Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. Journal of agricultural and food chemistry, 69(7), 2013–2040. https://doi.org/10.1021/acs.jafc.0c07744

Christopoulou, E., Lazaraki, M., Komaitis, M., & Kaselimis, K. (2004). Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils, Food Chemistry, 84(3), 463-474. https://doi.org/10.1016/S0308-8146(03)00273-5

Christy, A. A., Kasemsumran, S., Du, Y., & Ozaki, Y. (2004). The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical sciences: the international journal of the Japan Society for Analytical Chemistry, 20(6), 935-940. https://doi.org/10.2116/analsci.20.935

de Carvalho, I. M., da Silva Mutz, Y., Machado, A. C. G., de Lima Santos, A. A., Magalhães, E. J., & Nunes, C. A. (2023). Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry. Foods (Basel, Switzerland), 12(18), 3436. https://doi.org/10.3390/foods12183436

Drakopoulou, S. K., Kritikou, A. S., Baessmann, C., & Thomaidis, N. S. (2024). Untargeted 4D-metabolomics using Trapped Ion Mobility combined with LC-HRMS in extra virgin olive oil adulteration study with lower-quality olive oils. Food chemistry, 434, 137410. https://doi.org/10.1016/j.foodchem.2023.137410

El-Abassy, R. M., Donfack, P. & Materny, A. (2009). Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. Journal of Raman Spectroscopy. 40, 1284-1289. https://doi.org/10.1002/jrs.2279

Ergönül, P. G. & Köseoğlu, O. (2013). Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA-Journal of Food, 12(2), 199–202. https://doi.org/10.1080/19476337.2013.821672

Eriotou, E., Karabagias, I. K., Maina, S., Koulougliotis, D., & Kopsahelis, N. (2021). Geographical origin discrimination of "Ntopia" olive oil cultivar from Ionian islands using volatile compounds analysis and computational statistics. European food research and technology = Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. A, 247(12), 3083–3098. https://doi.org/10.1007/s00217-021-03863-2

Everstine, K. D., Chin, H. B., Lopes, F. A., & Moore, J. C. (2024). Database of Food Fraud Records: Summary of Data from 1980 to 2022. Journal of food protection, 87(3), 100227. https://doi.org/10.1016/j.jfp.2024.100227

Fiehn O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and functional genomics, 2(3), 155–168. https://doi.org/10.1002/cfg.82

Fragaki, G., Spyros, A., Siragakis, G., Salivaras, E., & Dais, P. (2005). Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. Journal of agricultural and food chemistry, 53(8), 2810–2816. https://doi.org/10.1021/jf040279t

Frankel E. N. (2010). Chemistry of extra virgin olive oil: adulteration, oxidative stability, and antioxidants. Journal of agricultural and food chemistry, 58(10), 5991–6006. https://doi.org/10.1021/jf1007677

Frigerio, J., Campone, L., Giustra, M. D., Buzzelli, M., Piccoli, F., Galimberti, A., Cannavacciuolo, C., Ouled Larbi, M., Colombo, M., Ciocca, G., & Labra, M. (2024). Convergent technologies to tackle challenges of modern food authentication. Heliyon, 10(11), e32297. https://doi.org/10.1016/j.heliyon.2024.e32297

Gurdeniz, G. & Ozen, B. (2009). Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry, 116(2), 519-525. https://doi.org/10.1016/j.foodchem.2009.02.068

Haider, A., Iqbal, S. Z., Bhatti, I. A., Alim, M. B., Waseem, M., Iqbal, M., & Mousavi Khaneghah, A. (2024). Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Comprehensive reviews in food science and food safety, 23(3), e13360. https://doi.org/10.1111/1541-4337.13360

Hashempour-Baltork, F., Zade, S. V., Mazaheri, Y., Alizadeh, A.M., Rastegar, H., Abdian, Z., Torbati, M., & Damirchi, S.A. (2024). Recent methods in detection of olive oil adulteration: State-of- the-Art, Journal of Agriculture and Food Research, 16, 101123. https://doi.org/10.1016/j.jafr.2024.101123

Hassan, W. & Duarte, A. E. (2024). Bibliometric analysis: A few suggestions. Current problems in cardiology, 49(8), 102640. https://doi.org/10.1016/j.cpcardiol.2024.102640

Ho, Y.S. (2014). Classic articles on social work field in Social Science Citation Index: a bibliometric analysis. Scientometrics 98, 137–155. https://doi.org/10.1007/s11192-013-1014-8

Huang, Y., Guan, Q., Zhang, Z., Wang, P., & Li, C. (2024). Oleacein: A comprehensive review of its extraction, purification, absorption, metabolism, and health effects. Food chemistry, 433, 137334. https://doi.org/10.1016/j.foodchem.2023.137334

IOC (2021) - International Olive Council. Recuperado de https://www.internationaloliveoil.org/wp-content/uploads/2021/05/IOC-Imports-2020-21.html

IOC (2024) Olive oil production statistics. Recuperado de https://www.internationalo liveoil.org/wp-content/uploads/2022/12/IOC-Olive-Oil-Dashboa rd-2.html#production-1

Jabeur, H., Drira, M., Rebai, A., & Bouaziz, M. (2017). Putative Markers of Adulteration of Higher-Grade Olive Oil with Less Expensive Pomace Olive Oil Identified by Gas Chromatography Combined with Chemometrics. Journal of agricultural and food chemistry, 65(26), 5375–5383. https://doi.org/10.1021/acs.jafc.7b00687

Jiménez, A., Rufo, M., Paniagua, J. M., González-Mohino, A., & Olegario, L. S. (2023). Authentication of pure and adulterated edible oils using non-destructive ultrasound. Food chemistry, 429, 136820. https://doi.org/10.1016/j.foodchem.2023.136820

Jiménez, A., Rufo, M., Paniagua, J. M., González-Mohino, A., & Olegario, L. S. (2024). Temperature dependence of acoustic parameters in pure and blended edible oils: Implications for characterization and authentication. Ultrasonics, 138, 107216. https://doi.org/10.1016/j.ultras.2023.107216

Jimenez-Lopez, C., Carpena, M., Lourenço-Lopes, C., Gallardo-Gomez, M., Lorenzo, J. M., Barba, F. J., Prieto, M. A., & Simal-Gandara, J. (2020). Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods (Basel, Switzerland), 9(8), 1014. https://doi.org/10.3390/foods9081014

Kaldeli, A., Zakidou, P., & Paraskevopoulou, A. (2024). Volatilomics as a tool to ascertain food adulteration, authenticity, and origin. Comprehensive reviews in food science and food safety, 23(4), e13387. https://doi.org/10.1111/1541-4337.13387

Kalua, C. M., Allen, M. S., Bedgoog, D. R., Bishop, A. G., Prenzler, P. D., & Robards, K. (2007). Olive oil volatile compounds, flavour development and quality: A critical review. Food Chemistry, 100, 273–286. https://doi.org/10.1016/j.foodchem.2005.09.059

Kurtoğlu, S., Uzundumlu, A. S. & Gövez, E. (2024). Olive Oil Production Forecasts for a Macro Perspective during 2024–2027. Applied Fruit Science 66, 1089–1100. https://doi-org.ez43.periodicos.capes.gov.br/10.1007/s10341-024-01064-1

López-Feria, S., Cárdenas, S., García-Mesa, J. A., & Valcárcel, M. (2008). Classification of extra virgin olive oils according to the protected designation of origin, olive variety and geographical origin. Talanta, 75(4), 937–943. https://doi.org/10.1016/j.talanta.2007.12.033

Lozano-Castellón, J., López-Yerena, A., Domínguez-López, I., Siscart-Serra, A., Fraga, N., Sámano, S., López-Sabater, C., Lamuela-Raventós, R. M., Vallverdú-Queralt, A., & Pérez, M. (2022). Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety. Comprehensive reviews in food science and food safety, 21(3), 2639–2664. https://doi.org/10.1111/1541-4337.12949

Luki´c, M., Luki´c, I., & Moslavac, T. (2021). Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae 7, 493. https://doi.org/10.3390/horticulturae7110493

Marcos Lorenzo, I., Pérez Pavón, J. L., Fernández Laespada, M. E., García Pinto, C., & Moreno Cordero, B. (2002). Detection of adulterants in olive oil by headspace-mass spectrometry. Journal of chromatography. A, 945(1-2), 221–230. https://doi.org/10.1016/s0021-9673(01)01502-3

Meenu, M., Cai, Q., & Xu, B. (2019). A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends in Food Science & Technology. 91, 391-408. https://doi.org/10.1016/j.tifs.2019.07.045

Meenu, M., Kurade, C., Neelapu, B. C., Kalra, S., Ramaswamy, H. S., & Yu, Y. (2021). A concise review on food quality assessment using digital image processing. Trends in Food Science & Technology. 118(Pt A), 106-124. https://doi.org/10.1016/j.tifs.2021.09.014

Meng, X., Yin, C., Yuan, L., Zhang, Y., Ju, Y., Xin, K., Chen, W., Lv, K., & Hu, L. (2023). Rapid detection of adulteration of olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible-near-infrared and excitation-emission matrix fluorescence spectroscopy: A comparative study. Food chemistry, 405(Pt A), 134828. https://doi.org/10.1016/j.foodchem.2022.134828

Milanez, K. D. T. M. & Pontes, M. J. C. (2014). Classification of edible vegetable oil using digital image and pattern recognition techniques. Microchemical Journal. 113, 10-16. https://doi.org/10.1016/j.microc.2013.10.011

Mínguez-Mosquera, M.I., Gandul-Rojas, B., Montano-Asquerino, A., & Garrido-Fernández, J. (1991). Determination of chlorophylls and carotenoids by high-performance liquid chromatography during olive lactic fermentation. Journal of Chromatography A. 585(2), 259-266. https://doi.org/10.1016/0021-9673(91)85086-U

Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics. 4(3), 265-277. https://doi.org/10.1016/j.joi.2010.01.002

Nikou, T., Witt, M., Stathopoulos, P., Barsch, A., & Halabalaki, M. (2020). Olive Oil Quality and Authenticity Assessment Aspects Employing FIA-MRMS and LC-Orbitrap MS Metabolomic Approaches. Frontiers in public health, 8, 558226. https://doi.org/10.3389/fpubh.2020.558226

Olmo-García, L. & Carrasco-Pancorbo, A. (2021) Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: Characterization studies, agro-technological investigations and assessment of healthy Properties. TrAC Trends in Analytical Chemistry. 135, 116153. https://doi.org/10.1016/j.trac.2020.116153

Ordoudi, S. A., Özdikicierler O., & Tsimidou, M. Z. (2022). Detection of ternary mixtures of virgin olive oil with canola, hazelnut or safflower oils via non-targeted ATR-FTIR fingerprinting and chemometrics. Food Control. 142, 109240. https://doi.org/10.1016/j.foodcont.2022.109240

Roca, M., Gandul-Rojas, B., Gallardo-Guerrero, L., & Minguez-Mosquera, M.I. (2003). Pigment parameters determining Spanish virgin olive oil authenticity: stability during storage. Journal of the American Oil Chemists' Society. 80(12), 1237-1240. https://doi.org/10.1007/s11746-003-0848-0

Romani, A., Ieri, F., Urciuoli, S., Noce, A., Marrone, G., Nediani, C., & Bernini, R. (2019). Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients, 11(8), 1776. https://doi.org/10.3390/nu11081776

Sudhakar, A., Chakraborty, S. K., Mahanti, N. K., & Varghese, C. (2023). Advanced techniques in edible oil authentication: A systematic review and critical analysis. Critical reviews in food science and nutrition, 63(7), 873-901. https://doi.org/10.1080/10408398.2021.1956424

Torres-Cobos, B., Quintanilla-Casas, B., Vicario, G., Guardiola, F., Tres, A., & Vichi, S. (2023). Revealing adulterated olive oils by triacylglycerol screening methods: Beyond the official method. Food chemistry, 409, 135256. https://doi.org/10.1016/j.foodchem.2022.135256

Uncu, O. & Ozen, B. (2019). A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control. 105, 209-218. https://doi.org/10.1016/j.foodcont.2019.06.013

Uncu, O. & Ozen, B. (2020). Importance of some minor compounds in olive oil authenticity and quality. Trends in Food Science & Technology. 100, 164–176. https://doi.org/10.1016/j.tifs.2020.04.013

Vaclavik, L., Cajka, T., Hrbek, V., & Hajslova, J. (2009). Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Analytica chimica acta, 645 (1-2), 56–63. https://doi.org/10.1016/j.aca.2009.04.043

Van Eck, N. J. & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/S11192-009-0146-3

Vieira, L. S., Assis, C., de Queiroz, M. E. L. R., Neves, A. A., & de Oliveira, A. F. (2021). Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection. Food chemistry, 345, 128866. https://doi.org/10.1016/j.foodchem.2020.128866

Vigli, G., Philippidis, A., Spyros, A., & Dais, P. (2003). Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. Journal of agricultural and food chemistry, 51(19), 5715–5722. https://doi.org/10.1021/jf030100z

Publicado

2024-11-07

Número

Sección

INVESTIGACIÓN CIENTÍFICA

Cómo citar

Gonçalves, N. F., Ambrozim, F. M., Santos, M. de F. P. dos, & Vicente, M. A. (2024). Análisis bibliométrico sobre metodologías para identificar la adulteración en aceite de oliva y perspectivas de futuro. Brazilian Journal of Production Engineering, 10(4), 117-137. https://doi.org/10.47456/bjpe.v10i4.45570

Artículos similares

1-10 de 834

También puede Iniciar una búsqueda de similitud avanzada para este artículo.